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Abstract. The Multiple Kernel Learning (MKL) paradigm aims at
learning the representation from data reducing the effort devoted to the
choice of the kernel’s hyperparameters. Typically, the resulting kernel
is obtained as the maximal margin combination of a set of base kernels.
When too expressive base kernels are provided to the MKL algorithm,
the solution found by these algorithms can overfit data. In this paper,
we propose a novel MKL algorithm which takes into consideration the
expressiveness of the obtained representation in its objective function in
such a way that a trade-off between large margins and simple hypothesis
spaces can be found. Moreover, an empirical comparison against hard
baselines and state-of-the-art MKL methods on several real-world datasets
is presented showing the merits of the proposed algorithm especially with
respect to the robustness to overfitting.

1 Introduction

Kernel methods are recognized state-of-the-art methods for classification. They
rely on the concept of kernel which implicitly defines the data representation.
However, choosing the right kernel for a given problem remains an hard task. In a
typical learning pipeline the user tries several kernels with different values of the
hyperparameters, guided by some prior knowledge or via a validation procedure.
This process is computationally expensive when the number of possible values
for the kernels hyperparameters is large. To overcome this issue, methods to
directly learn kernels from data have been recently proposed. Multiple Kernel
Learning (MKL) [1] is one of the most popular frameworks for kernel learning
[2, 3, 4, 5, 6]. The idea behind these methods is to combine a set of base kernels.
This is usually done by finding the kernel combination that maximizes the margin
in feature space. However, the complexity (or expressiveness) of the induced
representation is generally neglected, with the risk of obtaining a too complex
representation for the task at hand. To overcome this problem, more recent
approaches tried to regularize the combination, for instance, by considering the
radius of the Minimum Enclosing Ball (MEB) in their objective function [7, 8].
The main contribution of this paper is the proposal of a novel MKL algorithm,
here dubbed MEMO-MKL (Minimum Effort Maximum Output MKL), which
finds a combination of base kernels trading-off between margin maximization and
low expressiveness of the resulting representation. An extensive experimental
assessment has been performed comparing the proposed method against strong
baselines/state-of-the-art MKL methods on several benchmark datasets.
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2 Background and notation

We focus on binary classification problems. Let D ≡ {(xi, yi)}li=1 be the training
set where xi ∈ Rn are n-dimensional input vectors and yi ∈ {+1,−1} are the
associated labels. A kernel function κ : X × X → R defines the dot-product
in a Reproducing Kernel Hilbert Space (RKHS) H, by means of the function
φ : X → H, which maps vectors from the input space X onto the embedding (or
feature) space H, such that κ(x, z) = 〈φ(x), φ(z)〉 for two generic input vectors
x and z. The Kernel (or Gram) matrix K ∈ Rl×l is the matrix containing
the evaluation of the kernel function for all pairs of training vectors. Let K
be a kernel matrix, the (squared) margin achieved by a hard-SVM in feature
space can be computed as the value of the objective of a quadratic optimization
problem, namely minγ∈Γ γ

ᵀYKYγ, where Y is the diagonal matrix containing
the labels and Γ = {γ ∈ Rl+|

∑
i:yi=+1 γi =

∑
i:yi=−1 γi = 1}. In the following,

the Homogeneous Polynomial Kernel (HPK) κdHP(x, z) = 〈x, z〉d, d ∈ N and its

normalized version κ̃dHP(x, z) =
κd
HP(x,z)√

κd
HP(x,x)κd

HP(z,z)
will be used as base kernels.

2.1 Multiple Kernel Learning

MKL [1] is a method to combine a set of base kernels that represent different
similarity measures or different data sources (e.g. audio and video). Many
functional forms exist to combine kernels. In this paper, the convex combination
of base kernels is considered, that is:

κµ(x, z) =
P∑
r=1

µrκr(x, z) =
P∑
r=1

µr〈φr(x), φr(z)〉, µr ≥ 0,
∑
r

µr = 1.

where the r-th kernel κr(x, z) = 〈φr(x), φr(z)〉 consists of the dot-product in
feature space defined by the mapping function φr. In particular, we consider
HPKs of increasing degrees as base kernels. It has been shown that, under mild
conditions, any dot-product kernel of the form f(〈x, z〉) can actually be seen as
a convex combination of HPKs [9]. In other words, applying MKL on HPKs can
be seen as selecting a representation from the space of dot-product kernels.

2.2 Expressiveness of base kernels

The expressiveness (or complexity) of a kernel function can be defined as the
number of dichotomies that can be realized by hyperplanes inside such feature
space. It has been demonstrated that the expressiveness of a kernel is related
to the rank of its induced kernel matrix. Specifically, given a set of instances S
and the associated kernel matrix of rank r, then there is at least r instances in
S that can be fragmented in the feature space [9]. However, using the rank of
the kernel matrix for estimating the expressiveness can be very expensive since
it requires the decomposition of the kernel matrix. To this end, in [9], a simpler
measure able to approximate the rank of a kernel has been proposed, namely the
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Spectral Ratio (SR). Specifically, given a kernel matrix K, the SR is the ratio
between the trace norm ‖ · ‖T and the Frobenius norm ‖ · ‖F of K:

C(K) =
‖K‖T
‖K‖F

=

∑
iKii√∑
ijK

2
ij

. (1)

In the same work, it has been shown that 1 ≤ C(K) ≤
√
rank(K) always

holds. Furthermore, the SR has been related to other complexity measures,
such as the Empirical Rademacher Complexity and the radius of the Minimum
Enclosing Ball (MEB) in the feature space, that is the radius of the smallest
hypersphere enclosing the data in the kernel space. Note that, the maximal SR
is obtained by the identity kernel matrix, where examples are orthogonal to each
other C(Il) =

√
l, whereas the constant kernel C(1l1ᵀ

l ) = 1 has the minimal SR.
Notably, when a kernel is normalized (‖φ(x)‖2 = 1) the SR formulation in (1)
can be further simplified, that is C(K) = l‖K‖−1

F .

3 MEMO-MKL

MKL algorithms generally aim at finding mixing coefficients maximizing the
margin between the positive and negative classes. One of the main issues of MKL
is that the combined kernel may be too expressive for a given problem, with the
risk of overfitting. To overcome this problem a regularization term is usually
included in the optimization criterion of these algorithms. However, as far as we
know, only the mixing coefficients are regularized while no terms related to the
resulting kernel complexity is taken into consideration in the objective function.
In the MEMO-MKL algorithm presented in this paper we propose to find the
mixing coefficients µ which jointly minimize the SR and maximize the margin.
Note that, normalized kernels and convex combinations of them have constant
trace norm. Hence, minimizing the SR corresponds to maximizing the Frobenius
norm, that can be characterized for a combined kernel as in the following:

‖Kµ‖2F =
∑
i,j

(∑
r

µrK
(r)
ij

)2

=
∑
i,j

∑
r,s

µrµsK
(r)
ij K

(s)
ij

=
∑
r,s

µrµs

∑
i,j

K
(r)
ij K

(s)
ij


︸ ︷︷ ︸

Qrs

= µᵀQµ, Q ∈ RP×P .

In order to make the MKL problem unconstrained, a new vector of variables β
is introduced, such that µr(β) = eβr/||eβ||1 and Kµ(β) =

∑P
r=1 µr(β)K(r).

Given the change of variables above, the proposed algorithm maximizes the
following unconstrained objective function, that is a trade-off between simpler
representation (low SR) and large margin solutions:

Ψ(β) = γ̂(β)ᵀYKµ(β)Yγ̂(β) +
θ

2
µ(β)ᵀQµ(β), (2)
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where γ̂(β) = arg min
γ∈Γ

γᵀYKµ(β)Yγ, (3)

Note that, when θ = 0, the complexity of the representation becomes irrele-
vant, and the algorithm will find the coefficients maximizing the margin.
In order to maximize Ψ(β) which is not convex, an iterative optimization algo-
rithm is applied. We start from the uniform distribution of µ(β), corresponding
to β = 0. At each step, the algorithm first finds the coefficients γ̂(β) by op-
timizing (3) with the current β. Then, a step of gradient ascent is performed
on Ψ(β) where the vector γ̂ = γ̂(β) is considered locally constant. With these
assumptions, the derivatives of Ψ(β) can be easily computed as

∂Ψ(β)

∂βr
= γ̂ᵀYK(r)Yγ̂ + θµ(β)ᵀQr.

and the mixing weights updated by βr ← βr +η ∂Ψ(β)
∂βr

, µr(β) = eβr/||eβ||1, ∀r ∈
{1, . . . , P}. The learning rate η is selected dinamically during the optimization
by using the backtracking line-search method. The optimization loop ends when
a maximum number of iterations is reached or the improvement of the objective
function is below a fixed threshold.

4 Experimental assessment

To evaluate the effectiveness of the proposed MKL algorithm, a comparison
against hard baselines has been performed on several benchmark problems, de-
scribed in Table 1. These datasets are freely available on the UCI1 and libsvm
repositories2.

The datasets were randomly split in training (70%) and test (30%) sets, and
features were rescaled between 0 and 1 to prevent negative values. Multiclass
problems have been mapped into binary ones keeping the distribution of positive
and negative examples balanced. A 5-fold cross validation procedure on the
training set has been used to find the best combination of the hyperparameters.
After fitting the models, the accuracy score is computed on the test set. This
procedure has been applied 30 times, and the average accuracies were recorded.
Finally, normalized HPKs with degrees d ∈ [1, 20], and the identity matrix kernel
are considered for combination by MKL. The compared MKL methods are:

• average of base kernels, which is known to be a hard baseline, µr = 1
P ;

• EasyMKL, a fast and effective margin maximization MKL algorithm [10];

• (fixed) linear kernel, µ1 = 1, µi = 0 ∀i 6= 1;

• MEMO-MKL, the algorithm proposed in this paper.

1M. Lichman. UCI machine learning repository, 2013.
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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In all the experiments, an hard-margin SVM is used as base learner. The
hyperparameters are λ ∈ {0, .01, .1, .2, .3, .9, .95, 1} for EasyMKL, and θ ∈ {10i :
−4 ≤ i ≤ 4} for MEMO-MKL. Results are summarized in Table 1, where the
average of accuracies, standard deviations, datasets informations, and the ranks
of all used algorithms are shown. The results clearly show that MEMO-MKL
is better than EasyMKL when the base kernels are too complex for the task
considered and this especially happens when the number of features is large
with respect to the number of examples.

dataset l × n average EasyMKL MEMO-MKL linear

duke 44× 7129 59.70±19.87 64.24±19.77 84.55±9.72 84.55±9.72

colon 62× 2000 65.83±9.78 71.67±13.38 83.96±7.85 83.75±7.50

leukemia 72× 7129 64.81±8.53 76.11±11.84 96.85±3.71 96.85±3.71

liver-disorder 145× 5 65.59±5.75 68.29±5.75 70.00±7.46 73.87±5.51

iris 150× 4 89.30±4.75 91.67±5.22 89.47±4.80 89.21±4.47

wine 178× 13 97.63±3.39 97.78±3.14 97.78±1.99 97.33±2.10

sonar 208× 60 85.58±5.61 85.64±5.63 86.15±5.40 73.59±3.37

glass 214× 9 77.84±5.69 77.59±6.17 78.58±5.47 69.20±6.51

heart 270× 13 77.25±3.94 78.28±3.68 80.39±4.17 82.25±4.26

ionosphere 351× 34 96.36±1.59 96.33±1.49 96.33±1.57 89.05±3.51

breast-cancer 683× 9 96.47±1.33 96.41±1.23 96.20±1.24 96.32±1.47

australian 690× 14 81.23±2.92 84.89±2.81 85.18±2.73 84.74±2.50

diabetes 768× 8 74.25±2.31 76.77±2.56 77.19±2.24 77.27±2.44

vehicle 846× 18 96.98±1.17 97.11±1.20 97.11±1.23 91.15±1.61

fourclass 862× 2 80.11±2.41 79.95±2.58 80.29±2.64 75.96±3.00

vowel 990× 10 99.37±0.58 99.35±0.54 99.34±0.56 85.55±1.82

german-number 1000× 24 73.33±2.47 73.09±2.61 76.47±2.57 76.73±2.36

splice 1000× 60 84.85±1.54 84.93±2.12 84.80±1.55 80.05±2.27

dna 2000× 180 93.97±0.85 94.61±0.84 94.12±0.83 89.91±1.41

madelon 2000× 500 57.80±1.82 59.55±1.81 57.78±1.81 54.58±2.15

rank 2.85 2.20 1.80 2.90

Table 1: Datasets informations, accuracy scores (%) and rank of the proposed
method and baselines. Best results are marked as bold.

The weights computed by MEMO-MKL are analyzed in Fig. 1 (left), showing
their behavior when the hyperparameter θ is changed. As expected, increasing
the value θ, the distribution of weights is concentrated on low degree HPKs (lower
expressiveness), whereas more expressive HPKs will have higher weights when
the algorithm optimizes the margin (lower θs). In Fig. 1 (right) a comparison
between the weights computed by MEMO-MKL with θ = 0 and EasyMKL is
depicted, showing different distributions when both the methods focuses on large
margin solutions.

5 Conclusions and future work

In this paper a novel MKL algorithm have been proposed which finds the kernels
combination that maximizes the margin keeping low the complexity of the re-
sulting representation. The algorithm has been evaluated empirically on several
benchmark problems, showing better accuracies compared with three baselines.
Furthermore, the solution computed is generally very sparse, and the weights
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Fig. 1: Weights computed by MEMO-MKL varying the value θ (left) and weights
comparison between EasyMKL and MEMO-MKL with θ = 0 (right).

depend strictly on the selection of the regularization hyperparameter θ. In the
future, the behavior of the proposed algorithm when using different kernel func-
tions will be better analyzed, a comparison against other MKL approaches will
be considered, and the sparsity property will be more theoretically studied.
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