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Abstract. We introduce a novel framework, Output Fisher Embedding
Regression (OFER), that uses a Fisher vector representation of output
data and provides prediction by solving an appropriate pre-image problem.
OFER takes advantage of the implicit structure of the marginal probability
distribution of the output to improve performance in prediction. Although
the proposed approach is general and versatile, we put a stress on the
Gaussian mixture model for modelling the output data and design a closed-
form solution for the corresponding pre-image problem. Numerical results
on a drug activity prediction task and a semantic multi-class classification
show the relevance of the approach in small data regime.

1 Introduction

In supervised learning, much attention has been paid on designing appropri-
ate input representation by various techniques among which feature engineering
methods, kernel approaches [7, 9] and representation learning [2]. It is well
known that appropriate input features are key to the success of a learning al-
gorithm. Now, regarding the outputs, several works in multi-task learning [10]
as well as in structured output learning have shown that taking into account
the relationship between the target variables appears to be useful in improving
performance. In this work, we propose a novel approach that takes advantage
of the implicit structure of the marginal probability distribution of the target
in order to improve performance in prediction. We especially expect that in
small data regime and few-shot learning [6], such information can be useful. For
instance, if we observe that the target variable can be modeled by a mixture
model, for instance in the case of semantic clusters for label, we wish to use the
information that a given observed training output is drawn from a given com-
ponent of the mixture during learning. We assume that learning from one data
with an associated output in a given cluster should benefit to other training data
associated to the same output cluster. To implement this assumption, a novel
framework, called Output Fisher Embedding Regression (OFER), is introduced.
Its key principle is to learn to predict not the target variable directly but its
Fisher score regarding a probability distribution of the outputs estimated on
the output training data. Illustrated on a mixture model, this approach leads
to transform the target variable so that it includes an information about the
component of the mixture it is supposed to be drawn from. Taking another an-
gle, the output Fisher embedding defines a new surrogate loss that is minimized
instead of the usual square loss. Once the new model is learned, a prediction in
the original output space is obtained by solving a pre-image problem. We show
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that a small modification of the Fisher Embedding allows to get a closed-form
solution of the associated pre-image problem while keeping the interesting prop-
erties of the Fisher Score. The learning step itself only requires a model and
a learning algorithm able to deal with vectorial outputs. This paper presents
the framework in Section 2, then discusses experimental results in Section 3 and
draws a conclusion in Section 4.

2 Regression with Fisher Output Embedding

Denote X = Rd the input space and Y = RD the output space. An i.i.d.
random sample S` = {(xi, yi), i = 1, . . . , `} is drawn from a fixed but unknown
joint probability distribution P (X,Y ) where X (resp. Y ) are random vectors.
Output Fisher Embedding Regression (OFER) is based on three steps:

1. Definition of an output feature map, called here Output Fisher embedding,
φMFisher : Y → Rp, indexed by a matrix M of size (p × m) defined as a
Fisher score [1, 9]: φMFisher(y) = MφFisher(y) = M∇θ log pθ(y) where:

• pθ(y) is the density probability of a parametric probabilistic model

of parameter θ ∈ Rm and θ̂ is an estimate of θ obtained from the
training output set Y` = {y1, . . . , y`}.
• The linear transformation M allows to consider a large family of

Fisher embedding, enabling to simplify the pre-image problem.

2. Learning a minimizer in a class H of functions h : X → Rp using dataset S`
of the functional loss: J(h) = λ0Ω(h) + 1

2`

∑`
i=1 L

M
Fisher(yi, h(xi)), where

LMFisher : Y × Rp → R+ is a surrogate loss defined as:
LMFisher(yi, h(xi)) = ‖φMFisher(yi)− h(xi)‖2.

3. Given x, making a prediction in the original output space Y by solving a
pre-image problem: y∗ ∈ arg miny∈Y L

M
Fisher(y, h(x)).

Output Fisher Embeddings
In this paper, Fisher embeddings are illustrated on Gaussian Mixture Models
(GMMs) in order to capture cluster information among the output training data.

For a GMM defined by p(y|θ) =
∑C
j=1 πjfθj (y) where each fθj is Gaussian proba-

bility density function with parameter θj = {mj ,Σj}, mj being the expectation
of component j and Σj , the covariance matrix, the size of the corresponding
Fisher Score φFisher(y) is therefore C(1 + d + d2). Indeed, we have, for each
derivative:

∂ log(log pθ(y))

∂πj
=
fθj (y)

fθ(y)
= αj(y)

∂ log(log pθ(y))

∂mj
=πjαj(y)Σ−1

j (y −mj) = βj,1(y)

∂ log(log pθ(y))

∂Σj
=πjαj(y)(−Σ−1

j + Σ−1
j (y −mj)(y −mj)

tΣ−1
j ) = βi,2(y)
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The block of terms in the Fisher score are the derivative with respect to the
weights. Therefore they sum up the membership information of each output data
to each defined cluster. Fisher score and their inner product, the so-called Fisher
kernel, have been thoroughly exploited in the literature to provide accurate
classifiers in many fields such as bioinformatics [9], document categorization and
more recently image classification [13]. To our knowledge, this is the first use of
Fisher score in the output space. Moreover, we also propose to use a projection
matrix M for allowing flexibility in the definition and being able to reduce the
size of the new output.
Pre-image problem
The pre-image problem when M = I (identity) now writes as follows:

argmin
y∈Y

C∑
j=1

[
‖αj(y)− h1,j(x)‖2 + ‖βj,1(y)− h2,j(x)‖2 + ‖βj,2(y)− h3,j(x)‖2

]
Where h1,j(x),h2,j(x),h3,j(x) are parts of the prediction vector h(x) that cor-
respond to ∂

∂πj
, ∂
∂mj

, ∂
∂Σj

. However this pre-image problem is non-convex and

will require costly computations to get local minima. To handle this prob-
lem we develop a reduced version of the Fisher score by getting rid of the
derivative with respect to the covariance matrices with the following matrix

M : M =

M1 0 0
0 M2 0
0 0 0

 where M1 = IC and M2, a block matrix of size dC×d

is defined as: M2 = (IdId . . . Id). This embedding keeps on taking into account
the mixture structure while drastically reducing the dimension of the outputs
from C(1 + d+ d2) to (C + d) and allowing for a closed-form pre-image:

y∗ =

 C∑
j=1

πjh1,j(x)Σ−1
j

−1 C∑
j=1

h2,j(x) +

 C∑
j=1

πjh1,j(x)Σ−1
j µj

 . (1)

Learning with the Fisher surrogate loss
Any learning method able to deal with multiple outputs is eligible to solve the
learning task at hand. In this work, we have chosen to put emphasis on matrix-
valued kernel methods [10].
Related works
OFER can be interpreted as an instantiation of the general framework of Output
Kernel Regression (OKR) with the output Fisher kernel kFisher. OKR [4, 3, 8, 5]
relies on the kernel trick in the output space, allowing for predicting complex
outputs with squared loss applied in output feature space.

3 Experimental results

The relevance of OFER has been studied on synthetic datasets as well as on
two real datasets. We have especially explored how the approach behaves when
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learning in small data regime. In each experiment, the parameter θ is estimated
using E.-M. algorithm. The function h is learned using OFER implemented
through Kernel Ridge Regression for multiple outputs. The choice of kernel
k in the matrix-valued kernel K(x, x′) = Ik(x, x′) is linear by default if not
precised. A 5-Cross-Validation based on the training set was performed to select
the hyperparameters, among which the number of clusters for the OFER-GMM
(from 1 to 10). The experiments on synthetic datasets are not reported here
for sake of space available on demand but they first showed that the reduced
version of Fisher embedding improves the results in a context of small data
regime in compared to the other learning methods and the full Fisher output
embedding. Second, the additional time-cost of plugging our framework on a
supervised learning algorithm is not significant with respect to the initial time-
cost intrinsic to the chosen method.

3.1 Drug Activity prediction

Drug Activity Prediction [14, 3] is a task where labeled data are expensive to
obtain and call for learning in small data regime. The goal is to predict activities
of molecules on 59 cancer cell lines. The input set, X corresponds to the set of
2303 molecules where each molecule is represented as a graph labeled by atoms.
In all the experiments we directly used a data presentation under the form of a
Gram matrix with Tanimoto kernel [3]. Output data are a set of 59 scores of
activity for each molecule. Results are presented in terms of RRMSE (relative
root mean squared error) with a standard deviation. We used three baselines
: multi-output Kernel Ridge Regression (m-KRR) and multi-output Random
Forest for regression (m-RF) and variants of Input Output Kernel Regression
(IOKR) with an input operator-valued kernel and a scalar-valued output Gaus-
sian kernel [3]. IOKR is associated to a pre-image problem which is solved for
each test data using a gradient descent implemented in the Open Source library
scipy: https://www.scipy.org/.

RRMSE on Test Set: mean ± std (%)
Train size m-KRR IOKR m-RF OFER-GMM

10 0.24 ± 0.006 0.24 ± 0.006 0.23 ± 0.033 0.22 ± 0.009
20 0.22 ± 0.004 0.22 ± 0.004 0.22 ± 0.018 0.21 ± 0.008
100 0.22 ± 0.003 0.22 ± 0.003 0.21 ± 0.007 0.20 ± 0.004
300 0.20 ± 0.002 0.20 ± 0.002 0.19 ± 0.004 0.19 ± 0.002
500 0.19 ± 0.002 0.19 ± 0.002 0.19 ± 0.003 0.19 ± 0.001

Table 1: Comparison of (Gaussian) m-KRR, m-RF, IOKR and OFER-GMM on Drug
Activity Prediction

For this problem, OFER enables us to get slightly better performances in terms
of RRMSE. A notable fact is that the number of components in the mixture
model, selected by cross-validation, is 6, which corresponds to 6 levels of scores.
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3.2 Multiclass classification

The second experiment deals with the well-known Caltech1011 image dataset
consisting of images of 101 classes of animals and objects. The task was cast into
a word prediction task, following the idea that classes have a semantic meaning
and can be represented in a semantic space [12]. Once classes are replaced
by names (words) and names by their vectorial representations, the learning
algorithm is enable to exploit the semantics underlying the objects. X is here
the input feature space based on the fc7 feature map of the VGG19 pretrained
on the ILSVRC20142. The target set for Caltech101 is now Z = {cat,boat, . . .}.
Each class in Z is seen as a symbol and not a word. An intermediary semantic
vector space Y was defined using textual descriptions of the 101 classes in the
”Wiki corpus” by scraping the wiki pages. GLOVE [12] Semantic representations
based on GLOVE [12] were built in a 50-dimensional space (Y). Once the GMM
and the function h are learned, the prediction for a given input image x is
obtained by first computing the image h(x), then computing the pre-image ŷ
in Y and eventually, picking the class in Z whose semantic representation in
Y is the closest to the prediction ŷ. For all experiments, the evaluation metric
is the classification accuracy of the multi-class classifier. Therefore, in case of
M classes, a random classifier would have an accuracy of 1

M . Our framework
(OFER-GMM) is compared to four simple multiclass classifiers: SVM (m-SVM)
with a one-versus-all strategy, Multiclass Random Forest (m-RF), a multiple
output Kernel Ridge Regression with linear kernel (Sem-KRR) working in the
semantical output space Y and Sem-IOKR, a semantic variant of IOKR with
an output kernel chosen as Gaussian one on the semantic space Y. As the
number of target classes is limited, the minimization problem involved in pre-
image problem of IOKR is exactly solved. Note that the accuracy of multiclass
Random Forest (not reported in the table), from 1 to 10 examples per class,
did not exceed 1.6% with a std of 0.45. Table 2 shows that all the methods
based on semantic embedding,namely Sem-IOKR, Sem-KRR and OFER-GMM
outperform m-SVM when the number of labeled examples per class is very low:
typically #ex < 7 for Caltech101. The idea that consists of replacing indexes of
object classes by class names seems therefore relevant in this application. The
lack of labeled data for a given class is bridged by the information conveyed by
other labels in semantically close classes. Now, in case of a relatively large set
of labeled examples per classes (10), OFER-GMM is outperformed by m-SVM
and it is not worth applying the OFER framework in this case.

4 Conclusion

OFER exhibits a very interesting behaviour when dealing with a small number
of examples either in a multi-class classification or in multiple output regression.
A next step is to integrate the selection of the appropriate surrogate loss into the

1http://www.vision.caltech.edu/Image Datasets/Caltech101/
2http://image-net.org/challenges/LSVRC/2014/
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# ex/
class

Classification accuracy on Test Set: mean ± std (%) - Caltech101
m-SVM Sem-IOKR Sem-KRR OFER-GMM

1 9.61 ± 3.98 13.40 ± 2.22 14.83 ± 4.02 38.22 ± 2.87
3 33.89 ± 1.79 22.51 ± 1.81 22.71 ± 2.33 46.33 ± 2.44
5 47.63 ± 2.87 24.90 ± 1.27 25.91 ± 1.28 49.40 ± 2.09
7 55.19 ± 2.43 26.84 ± 0.92 27.42 ± 1.59 50.39 ± 2.04
10 58.55 ± 1.84 31.27 ± 1.84 29.49 ± 1.39 50.49 ± 1.07

Table 2: Results on Caltech101 with a growing number of labeled examples per class.

learning phase. Moreover, the proposed framework should also work for other
classes of parametric models on more complex tasks.
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