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Abstract. In dimensionality reduction and data visualisation, t-SNE
has become a popular method. In this paper, we propose two variants to
the Gaussian similarities used to characterise the neighbourhoods around
each high-dimensional datum in t-SNE. A first alternative is to use t distri-
butions like already used in the low-dimensional embedding space; a vari-
able degree of freedom accounts for the intrinsic dimensionality of data.
The second variant relies on compounds of Gaussian neighbourhoods with
growing widths, thereby suppressing the need for the user to adjust a single
size or perplexity. In both cases, heavy-tailed distributions thus charac-
terise the neighbourhood relationships in the data space. Experiments
show that both variants are competitive with t-SNE, at no extra cost.

1 Introduction

Nonlinear dimensionality reduction (NLDR) aims at representing faithfully high-
dimensional (HD) data in low-dimensional (LD) spaces, mainly for exploratory
visualisation or to foil the curse of dimensionality [1]. Several paradigms have
been studied over time, like the reproduction of distances [2] or neighbourhoods
[3, 4] from the data space to the embedding space. As a typical method of mul-
tidimensional scaling based on distance preservation, Sammon’s nonlinear map-
ping [5] has been popular for nearly 50 years, with about 3600 citations on Google
Scholar at the time of writing. As a more recent neighbourhood-preserving
NLDR method, t-distributed stochastic neighbour embedding (t-SNE) [6] has
earned more than 3400 citations in merely a single decade. Over these 10 years,
t-SNE has raised much interest, owing to its impressive results. Variants with
alternative divergences as cost functions [7, 8, 9] and lower-complexity tree-based
approximations [10, 11] have been developed. Properties of t-SNE have been in-
vestigated to explain why it outperforms blatantly many older NLDR methods
[12]. However, some questions remain.

For instance, it remains difficult to justify the use of apparently unrelated
neighbourhood distributions in the HD and LD spaces, namely, Gauss versus
Student. For very high-dimensional data, the intuition of a crowding problem
[6], related to the curse of dimensionality, motivates tails that are heavier in
LD than in HD. Mid-range to distant neighbours are then repelled further away,
which compensates for the relative lack of volume in LD spaces, compared to HD.
This approach tends, however, to over-emphasise clusters or to be too extreme
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for data with low intrinsic dimensionality. Adapting the degrees of freedom of
the Student function has been a possible workaround [13]. We investigate here
the use of twice Student SNE, coined tt-SNE, with t functions in both spaces.

Another question relates to the relevance of the perplexity, the main metapa-
rameter in t-SNE. Following previous work [14], we show that compound Gaus-
sian neighbourhoods, with exponentially growing perplexities, can be used in
t-SNE to obtain multi-scale neighbourhoods with intermediate tails, between
Gauss and Student. Such compounded Gaussian neighbourhoods span system-
atically a broad range of perplexities, relieving the user of its adjustment.

Experiments show that the proposed variants are as competitive and efficient
as t-SNE and they are applicable in a broader variety of cases.

The rest of this paper is organised as follows. Section 2 is a reminder of
SNE and t-SNE. Section 3 describes our contributions. Section 4 reports the
experimental results. Section 5 draws the conclusions and sketches perspectives.

2 SNE and t-SNE

Let Ξ = [ξi]
N
i=1 denote a set of N points in a HD metric space with M features.

Let X = [xi]
N
i=1 represent it in a P -dimensional LD metric space, P ≤ M . The

HD and LD distances between the ith and jth points are noted δij and d ij . SNE
defines HD and LD similarities, for i ∈ I = {1, . . . ,N } and j ∈ I\{i} [4]:

σij =
exp

(
−πiδ2ij/2

)∑
k∈I\{i} exp

(
−πiδ2ik/2

) , sij =
exp

(
−d2

ij/2
)∑

k∈I\{i} exp
(
−d2

ik/2
) , σii = sii = 0.

Precisions πi are set to reach a user-fixed perplexity K ? for the distribution
[σij ; j ∈ I\{i}]: πi such that logK ? = −

∑
j∈I\{i} σij log σij . The perplexity

is interpreted as the size of the soft Gaussian neighbourhood. SNE then finds
the LD positions by minimising the sum of divergences between the HD and
LD similarity distributions: CSNE =

∑
i∈I,j∈I\{i} σij log (σij /sij ).

Besides symmetrising the similarities, t-SNE uses a Student t function with
one degree of freedom in the LD space, to cope with ‘crowding’ problems [6]:

σij,s =
σij + σji

2N
, sij,t =

1

(1 + d2
ij)
∑
k∈I,l∈I\{k}(1 + d2

kl)
−1
, sii,t = 0.

The t-SNE cost function uses KL divergences as in SNE. It is minimised by
gradient descent, each evaluation requiring O

(
N 2
)

operations.
The discrepancy between Gauss and Student distributions is arbitrarily fixed

in t-SNE, without guarantee that the induced distance transformation is optimal.
To address this issue, a variant of t-SNE has been described [13], where sij,t has
an additional parameter α, adjusting the degrees of freedom:

sij,t =
1

(1 + d2
ij/α)(α+1)/2

∑
k∈I,l∈I\{k}(1 + d2

kl/α)−(α+1)/2
, (1)

where α can be learned. A relation between α and the intrinsic dimensionality
of data is hypothesised. If α→∞, the Student function tends to a Gaussian.
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3 Heavy tails in the high-dimensional space

A Student with infinite degrees of freedom boils down to a Gaussian. Conversely,
a Student turns out to be a compound distribution, involving zero-mean Gaus-
sians with gamma-distributed precisions. Marginalising over the precision leads
to a Student. The shape and scale parameters of the gamma determine the de-
grees of freedom and scaling of the resulting Student. Hence, t-SNE appears as a
variant of SNE where both HD and LD neighbourhoods follow Student functions
with, respectively, ∞ and 1 degrees of freedom. Let us consider that (i) t-SNE
works usually better for very high-dimensional than simple manifolds, and (ii)
tweaking the degrees of freedom α in the LD neighbourhoods sij,t has been tried
[13], linking α and the intrinsic data dimensionality M ′. From there, we suggest
using Student functions in both spaces, with degrees of freedom equal to M ′− 1
and P − 1, instead of ∞ and 1 in t-SNE. Formally, twice t-SNE, coined tt-SNE,
relies thus on σij,ts = (σij,t + σji,t)/(2N),

σij,t =
(1 + πid

2
ij/M

′)−M
′/2∑

k∈I\{i}(1 + πid
2
kl/M

′)−M ′/2
, sij,t =

(1 + d2
ij/P )−P/2∑

k∈I,l∈I\{k}(1 + d2
kl/P )−P/2

.

Unlike in [13], the degrees of freedom are fixed beforehand in both σij,t and
sij,t; an ad hoc estimator of the intrinsic data dimensionality provides M ′ [14].
The chosen degrees of freedom ensure consistency with genuine t-SNE in the
LD space if P = 2, whereas the discrepancy between σij,t and sij,t adapts with
respect to the dimensionality gap between M ′ and P . Precisions πi can be
determined to reach the user-specified perplexity K ?. Learning the degrees of
freedom as in [13] would increase running times, since the precisions should be
retuned at each iteration.

If both Gaussian and heavy-tailed distributions like Student’s can be used
for the HD neighbourhoods, then other intermediate distributions could be con-
sidered as well. Relying again on the definition of the Student as a compound of
Gaussians with gamma-distributed precisions, we suggest a similar but discre-
tised scheme. We use the multi-scale Gaussian similarities from previous work
[14], defined as σij,s = (σij + σji)/(2N), with

σij =
1

H

H∑
h=1

σhij , and σhij =
exp(−πhiδ2ij/2)∑

k∈I\{i} exp(−πhiδ2ik/2)
, (2)

where H = blog2(N/2)e. Precisions πhi are adjusted by imposing exponentially
growing perplexities K ?h = 2h with 1 ≤ h ≤ H (or linearly growing entropies).
Precisions are thus sampled in a data-driven way. The resulting compound distri-
bution has a heavier tail than a single Gaussian, although it remains lighter than
a Student since the widest Gaussian component σHij in σij keeps an exponen-
tially decreasing tail. As a key advantage, multi-scale Gaussian neighbourhoods
do no longer require the user to set a perplexity. Integrating them in t-SNE
leads to multi-scale t-SNE or Ms.t-SNE in short.
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4 Experiments and discussion

The compared NLDR methods are (i) SNE [4] (ii) t-SNE in its genuine 2008
implementation [6], (iii) a modified version where precisions are determined with
Newton’s method [15] instead of binary searches, (iv) tt-SNE, (v) Ms.t-SNE, and
(vi) Ms.SNE [14]. Perplexities in the first four methods are fixed to 32.

The data sets are a spherical manifold (N = 1000,M = 3,M ′ = 2.03)
[14], COIL-20 (N = 1440,M = 16384,M ′ = 6.5) [16], a subset of MNIST
(N = 1000,M = 784,M ′ = 8.07) [17], and B. Frey’s faces (N = 1965,M =
560,M ′ = 6.43). Intrinsic dimensionality was computed as in [14]. Target di-
mensionality P is two for all data sets. As to DR quality, some studies developed
indicators of the HD neighbourhoods preservation in the LD space [18, 14], be-
coming generally adopted in several publications [7, 14]. Let sets νKi and nKi
index the K nearest neighbours of ξi and xi in the HD and LD space, respec-
tively, with QNX(K) =

∑
i∈I
∣∣νKi ∩ nKi

∣∣ /(KN ) ∈ [0, 1] measuring their average
normalised agreement. As its expectation amounts to K/ (N − 1) for random
LD points, RNX(K) = ((N − 1)QNX(K)−K) /(N − 1−K) allows comparing
different neighbourhood sizes [14]. The curve is displayed on a log-scale for
K as close neighbours prevail. Evaluated in O

(
N 2 logN

)
time [18], its area

AUC =
(∑N−2

K=1RNX(K)/K
)
/
(∑N−2

K=1 1/K
)
∈ [−1, 1] grows with DR quality,

quantified at all scales with an emphasis on small ones.
The results are shown in Fig. 1. In terms of AUC, SNE performs poorly com-

pared to all t-SNE variants [12]. Precision computation with either binary search
or Newton’s method [15] has little impact on the results. Ms.SNE [14] yields
the best AUCs. Using heavy tails in the HD space, the proposed methods tt-
SNE and Ms.t-SNE produce embeddings where clusters are less over-emphasised,
since the HD-LD tail gap is actually tighter for these than for t-SNE. A Student
with α = 2 or 3 is indeed always closer to another Student (with α < ∞) than
a Gaussian (a Student with α = ∞). Cluster over-emphasis, present in t-SNE
and to a lesser extent in tt-SNE and Ms.t-SNE, is slightly detrimental to the
AUC, with weaker preservation of large neighbourhoods. Precision computation
with t HD neighbourhoods in tt-SNE fails to converge for some points, without
impact on the embedding quality, tt-SNE being only second to Ms.SNE and
Ms.t-SNE. Ms.t-SNE shows very good 1NN fidelity, without significant loss in
larger neighbourhoods, with the advantage for the user of having no perplexity
to adjust, like in Ms.SNE. As to running times, all t-SNE variants have the
same complexity of O

(
N 2
)
, whereas Ms.SNE runs in O

(
N 2 logN

)
, explaining

the overall best results of the latter. Computation of multi-scale neighbourhoods
takes O

(
N 2 logN

)
in Ms.t-SNE but it is carried out only once at initialisation

and is thus negligible with respect to the iterated gradient evaluation in O
(
N 2
)
.

5 Conclusions and perspectives

Two variants of t-SNE are proposed. The first replaces Gaussian neighbour-
hoods in the data space with Student t functions, to be more consistent with
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the t neighbourhoods in the embedding space. The dimensionality gap between
both spaces is accounted for by different degrees of freedom, determined in the
HD space by the intrinsic data dimensionality. The second variant reuses the
compound, multi-scale HD neighbourhoods described in [14] and matches them
with LD t neighbourhoods; the user has no longer any perplexity or neighbour-
hood size to adjust. Experiments show that these variants are competitive with
t-SNE and broadens its applicability. Perspectives include (i) the possibility to
use multivariate t distributions to better accomodate for taking into account
the intrinsic dimensionality, and (ii) adapting precision sampling in Ms.t-SNE
to better match the t function in the LD space.
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Fig. 1: Embeddings and RNX(K) quality curves (with their AUC) for Sphere,
COIL-20, MNIST, and Frey’s faces. ’g’ Gaussian, ’t’ Student, ’Ms.’ multi-scale.
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