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Abstract. Whereas detecting and adapting to concept drift has been
well studied, predicting temporal drift of decision boundaries has received
much less attention. This paper proposes a method for drift prediction,
drift projection, and active-learning for adjusting the projected decision
boundary so as to regain accuracy with minimal additional labeled sam-
ples. The method works with different underlying learning algorithms.
Results on several data sets with translational and rotational drift and
corresponding boundary projection show regained accuracy with signifi-
cantly fewer labeled samples, even in the presence of noisy drift.

1 Introduction: (Semi-) Predictable Concept Drift

Temporal concept drift abounds. Consider, for instance, the concept of “a pow-
erful laptop” ten years ago compared to the present day. Processor performance,
number of cores, etc., that would have qualified as powerful ten years ago are
considered quaint or under-powered today. For smart phones the evolution is
even more striking and rapid. Clothing considered fashionable years ago may be
considered passé today. A company that was financially sound a few years ago
might now be heading for Chapter 11 due to e-commerce competition. While
the above examples entail massive concept drift, smaller and subtler drift is also
common, and all drift requires updating models with additional labeled training
data in order to maintain accuracy.

Concept drift has been widely studied in the literature (e.g., [1, 2, 3, 4, 5, 6]).
Transfer learning [7] has been considered for drift tracking and adaptation [2], if
in adversarial setting. To our knowledge, however, existing drift recovery meth-
ods are not based on predicting properties of the evolving decision boundaries.
Instead, some make use of assumptions such as bounded drift (see below) to
regain lost classification accuracy faster through additional sampling of newly
labeled data. While useful and effective, this fails to exploit the presence of
predictable or semi-predictable drift.

More formally, consider a supervised learning setting where the set of classi-
fiers F map input attributes {x1, x2, . . . , xn} into the correct output class yj ∈ Y .

We can write this as: F :
→
Xi→ Y. A trained classifier includes model parameters−→

θ = {θ1, θ2, . . . , θk}. These parameters are, for instance, the coefficients in lo-
gistic regression, or the weights on the links between layers of a neural network.

Hence we slightly expand the above to: Fθ :
−→
Xi → Y ,

For temporal drift, a classifier trained in earlier epochs may re-estimate dif-
ferent values for its parameters at each time step to regain classification accuracy.

The model parameters are therefore time-dependent: F(θ(t)) :
−→
Xi → Y .
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If we can assume that the drift is bounded – that is, the change in the
parameter values is small in adjacent time steps – we may bound the total change
in model parameters, for any norm p, by: 1

k

∑k
i=1 ‖θi(t)−θi(t+1)‖p < δmax-drift.

Alternatively, we can incorporate the above expression as a regularization term
in the loss function when re-estimating the model parameters at time t+ 1.

When dealing with non-predictable concept drift, the best we can do is to use
the previous model parameters at time t, as the best initial estimate for time
t + 1. In other words, we are simply projecting θ(t) → θ̂(t + 1) assuming the
identity projection function. However, if the drift is at least partially predictable,
we may do better, assuming a projection function π(θ(t))→ θ̂(t+1), which gives

us a better estimate of θ̂(t+ 1) prior to active learning.

Note that if π(θ(t)) is a better approximation for θ̂(t+ 1) than θ(t), then the
empirical loss of the classifier based on projecting the drift is smaller than the
loss of simply starting with the previous model parameters, i.e.:

n∑
i=1

‖yi,t+1 − fπ(θt)(
−→xi)‖p <

n∑
i=1

‖yi,t+1 − fθt(−→xi)‖p

The above means that fewer additional labeled training instances should be
required at each time interval to restore accuracy after drift by projecting the
direction and magnitude of said drift. As we see below in our experimental
results, this expectation is indeed borne out.

For simplicity, we assume that the resulting classification boundary can be
approximated by a linear hyperplane subject to drift in its parameters, as illus-
trated in Fig. 1. Our system (dubbed ADAPT1), designed to track and project
such boundaries, is described in section 2. Experiments on multiple data sets
with synthetic drift are described in section 3.

Fig. 1: Concept decision-boundary drift.

2 Temporal Transfer Learning for drift prediction

Our ADAPT system consists of three major components, depicted in Figure 2.
The drift simulator relabels instances at each time point, according to a pro-
grammable drift function that reflects the changes on the decision boundary,
along with parameterized noise insertion. For data with true temporal drift, this

1ADAPT: Automated Drift-Aware Projection and Transfer
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simulator would be unnecessary. The drift predictor contains a model trained
jointly over all the observed labeled instances, including those from past time
steps, to model the drift. It essentially extrapolates near-future drift based on
recent drift history. The target classifier learns the expected decision boundary
first at time 0 (from an initial training set), and then incorporates the drift
prediction and incrementally adjusts the decision boundary via active learning.

Fig. 2: System Diagram

The drift predictor, which is our primary unique contribution, uses a joint
model optimizing the following objective function at each time t:

Ldp(D
0, . . . , Dt|−→w0, c0, δ

−→w , δc) =
∑
i=0..t

LLR(Di|−→w0 + i · δ−→w , c+ i · δc)

+ λ1‖−→w0‖2 + λ1‖−→w0 + t · δ−→w ‖2 + λ2‖δ−→w ‖2
(1)

where Di is the training set used at time i and LLR(D|−→w , c) is the loss
function for logistic regression with parameters −→w , c. This function lets us find
the best set of base parameters and their increments by joint optimization. For
the target classifier at each time point, we use regularized logistic regression.
Rather than just projecting model parameters for time t+1, we use uncertainty-
based active learning [8, 9]. As specified in Algorithm 1, whenever a new active
learning phase starts, the drift prediction θh′ = (−→w ′, c′) is added as a prior in the
regularization term of the following objective function to transfer the knowledge:

LTransferLR(D|−→w , c;−→w ′, c′) = LLR(D|−→w , c) + λ‖−→w −−→w ′‖2.

3 Experiments

Data: We used five UCI binary prediction datasets2 to evaluate our algorithm.
As these datasets do not have time stamp information, we used our drift simula-
tor component, for which drift and noise parameters can be specified, to augment
the (real) data with simulated drift.

2Available from https://archive.ics.uci.edu/ml/datasets.html.
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input: An unlabeled dataset X = {xi}
// Requires drift simulator or data with drift
Drift Simulator: πs : N→ H, Drift Predictor: πp : N→ H
Required number of periods to observe drift: td
Target classifier: C, Labeling budget: B

for t← 0 to T do
ht ← πs(t) // Acquire / Generate drift
Y t ← {yti ← ht(xi) ∀xi ∈ X} // Relabel w.r.t the new boundary
Initialize Dt

l with a few randomly chosen instances from Dt ← {(xi, yti)}
Dt

u ← Dt \Dt
l

// Predict new concept boundary
if t > td then h′ ← πp(t) else h′ ← None
for i← 0 to B do

Train C with Dt
l , θh′

Sample (x, y) ∈ Dt
u // Sample via active learning

Dt
u ← Dt

u \ {(x, y)}
Dt

l ← Dt
l ∪ {(x, y)}

end
Dall ← Dall ∪ {Dt

l}
Update πp with Dall // Update drift predictor

end
Algorithm 1: Overall system flow

Assumptions and Experimental setup: We assume the distribution of the
feature vectors is stationary and that the labels, i.e. the conditional probabilities,
are changing. The predicted parameters of a Logistic Regression classifier are
used to transfer knowledge from prior epochs when available. We set the final
target decision boundary by adding relative Gaussian noise sampled at N (0.25 ·
−→
1 , 0.25 · I) to the decision boundary of the original data set. The simulated drift
is linear, both rotational and translational, with Gaussian noise.

At each time t, we use active learning with uncertainty sampling (with bud-
gets according to dataset as listed in Table 1). As a few drift measurements are
needed to establish the linear-transformation extrapolation, we start projecting
future drift only after a warm-up period of td epochs. A setting of td = 4 appears
satisfactory (optimizing this parameter is left for future work). To simulate the
presence of noise, the drift simulator (1) adds a relative 5% Gaussian noise to
the parameters of the new boundary, and (2) flips the labels on the samples with
a 0.1× P (∼ Y |X) probability.

The results are compared with an active-learning baseline that transfers the
knowledge from the previous time step with an identity projection. To quantify
the performance differences, we used the following metrics:
• Area under the Learning Curve (ALC): This estimates how the projected

drift priors affect the performance of the system throughout its lifetime.
• Recovery speed: Lx = Number of Labeled instances needed to achieve a

(pre-specified) x% of the highest accuracy during the previous time period.
This metric is directly relevant, but not always applicable.
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Results: Figure 3 shows the learning curve for ADAPT and the baseline, for the
KR-vs-KP (Chess) dataset, in the case of added noise (the figure without noise is
nearly identical). As soon as drift predictions are included (from t = 5 onward),
ADAPT outperforms the baseline in both cases. Table 1 summarizes the
performance comparison under simulated noise on all the datasets we used. For
the waveform dataset, where we simplified the task to a binary classification
using the first two classes only, our measure L95 did not yield a significant
difference, hence we also include L97. On average, our method needs 20% to
60% fewer labels to recover accuracy.

Budget
ADAPTd (LR) Baseline (LR)

ALC L95 ALC L95

Ionosphere 80 497.81 8.57 492.90 14.71

KR-vs-KP 100 633.12 23.14 621.23 40.00

Magic04 100 654.09 3.43 649.04 7.14

Sonar 60 365.89 8.86 358.34 11.29

Waveform 100 557.27 3.17 (L97 4.33) 553.74 2.5 (L97 11.33)

Table 1: Area under the Learning Curve(ALC) and Recovery Speed(L95) comparison
between ADAPT and the baseline after time 3 (Logistic Regression)

Fig. 3: Accuracy for kr-vs-kp dataset with noise in both drift and labels

Validation on an alternative classifier: Instead of a logistic regression
learner, we also implemented and tested an SVM learner within the ADAPT
framework on the same data. While SVM appears to take less advantage of
our temporal transfer learning, in most cases ADAPT clearly outperforms the
(SVM) baseline, as illustrated in Figure 4.

4 Conclusions and Future Work

We have proposed a method for drift prediction and tracking and shown that our
implementation (‘ADAPT’) requires significantly fewer samples to regain accu-
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Fig. 4: Accuracy for kr-vs-kp dataset (SVM)

racy than an adaptive baseline in the case of linear translational and rotational
drift, both in the absence and the presence of noise, on several UCI datasets,
for two different underlying machine learning methods (logistic regression and
SVM). We plan to extend ADAPT to handle non-linear (quadratic, cyclic) drift,
as well as validate the techniques on large real-life datasets (e.g.[4]).
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