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Abstract. This paper presents a new classification approach for Parkin-
son’s Disease (PD) diagnosis using Continuous Dynamic Time Warping
(CDTW) technique and gait cycles data. These data are the vertical
Ground Reaction Forces (vGRFs) recordings collected from eight force sen-
sors placed in each shoe sole worn by each subject. The proposed approach
exploits the principle of the repetition of gait cycle patterns to discriminate
healthy subjects from PD subjects. The repetition of gait cycles is evalu-
ated using the similarity of the time-series corresponding to stance phases
estimated by applying the CDTW technique. The CDTW distances, ex-
tracted from gait cycles, are used as inputs of a binary classifier discrimi-
nating healthy subjects from PD subjects. Different classification methods
are evaluated, including four supervised methods: K-Nearest Neighbours
(K-NN), Decision Tree (DT), Random Forest (RF), and Support Vector
Machines (SVM), and two unsupervised ones: Gaussian Mixture Model
(GMM), and K-means. The proposed approach compares favorably with
a classification based on standard features.

1 Introduction

Parkinson’s disease (PD) affects the human central nervous system by destroying
dopaminergic neurons which produce dopamine. Dopamine is a neurotransmitter
that sends messages to the brain in order to control the human movement [I, 2]
3]. Thereby, most of PD patients present movement disorders causing walking
disturbances [, 2]. Several symptoms can be observed as: tremors, muscle
stiffness, and changes in gait pattern [2]. The gait pattern is represented by
the gait cycle which is mainly composed of two phases: stance phase and swing
phase representing, respectively, 60 % and 40 % of the gait cycle. Usually,
the walking of a healthy subject is characterized by a repetition of the gait cycle
pattern, while that of PD subjects shows significant variations in the gait pattern
from one gait cycle to another [4]. The repetition of gait cycles is evaluated
using the similarity of the time-series corresponding to stance phases. Dynamic
Time Warping (DTW) is a technique commonly used in the literature for time-
series mining [5]. Continuous Dynamic Time Warping (CDTW), an improved
version of DTW] is used in this paper to obtain a better resolution in the time-
series matching, and therefore, a finer calculation of the similarity between gait
cycles. The CDTW distances, extracted from gait cycles, are used as inputs of
a binary classifier discriminating healthy subjects from PD subjects. This paper
is organized as follows: section 2 is devoted to the datasets description and pre-
processing phase. Section 3 presents the proposed approach. The performances
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of this approach are presented and discussed in section 4. Finally, a conclusion
and some perspectives are given in the last section.

2 Datasets description and pre-processing

The three datasets used in this study are available on the PhysioNet website
[6]. The first one is provided by Yogev et al. [7]; it includes the gait data of 29
PD subjects and 18 healthy ones. The second dataset, provided by Hausdorff
et al. [§], contains the gait data of 29 PD and 25 healthy subjects. The third
one, provided by Frenkel-Toledo et al. [9], includes the gait data of 35 PD
subjects and 29 healthy ones. The gait data are the vertical Ground Reaction
Forces (vGRF's) recordings collected from eight force sensors placed in each shoe
sole worn by each subject. Each recording includes sixteen signals provided
by the force sensors. In this study, the time-series corresponding to the sum
of the 8 sensors outputs for each foot are used as reference to characterize the
gait pattern of each subject. In the experiments, the subjects were asked to walk
through a round trip walkway, leading therefore to the presence of outliers in the
gait data. The recorded data in the turn-around phases are manually removed.
Furthermore, to eliminate the start-up and end-up effects, the first and the last
20 seconds of the walking duration are also removed. Some fluctuations in the
swing phase are observed, and lead to non-zero values in the vGRFs data; a
10-points median filter is used to remove these outliers.

3 Proposed diagnosis approach

The proposed approach follows three main steps: (1) Segmentation step: which
consists of an automatic segmentation of each recorded gait time-series (left
foot/right foot) taken separately, into a set of swing and stance phases. Only
stance phases are considered in this study since vGRF's values in swing phases
are equal to zero; (2) Feature extraction step: this step is achieved using the
Continuous Dynamic Time Warping (CDTW) technique to evaluate for each
foot the similarity between each stance phase and each of the other ones. Two
CDTW distances vectors characterizing this similarity are then extracted from
the segments obtained in the segmentation step; a distances vector is associ-
ated to each foot. By using the mean and the STD of each CDTW distances
vector, four features are thus considered in the classification step; (3) Classi-
fication step: the four extracted features are used as inputs of the classifier.
Different classification methods are evaluated, including four supervised meth-
ods: K-nearest neighbors (K-NN), Decision Tree (DT), Random Forest (RF),
and Support Vector Machines (SVM), and two unsupervised ones: Gaussian
Mixture Model (GMM), and K-means.

3.1 Continuous Dynamic Time Warping (CDTW)

This subsection describes the CDTW model used to calculate the similarity
between gait cycles. Let B, = {Q.(t),t = 1,...,T;} and B, = {Qy(t),t =
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1,...,Ty} be 2-D curves, and ¢ = [p,(t), py(t)] the warping (correspondence)
map between B, and B,, with Q4 (¢4 (t)) € B, corresponds to Q(¢y(t)) € By,
for ¢ € (1,...,T). The distance between B, and B, is defined as follows:

T
Dist(B,, B,) = tE_:z A(Qu(p, (1-1))s Quey (t—1)))s (Qu(pn (1)) Ry, (1))
T
2
= t; 1Qu (e (1) Qupy (1)) = Qe (t—1) @y (t—1))

The problem is to find the warping function ¢ = [ (t), ¢, (t)]T minimizing the
distance in equation [l The solution to this problem can be expressed as follows:

¢ = @z, py] = argmingDist(B,, By) (2)

Let Dist(t — 1) = Dist(¢(t — 1)) be the cumulated distance up to the ¢t — 1
matching, and d((Qu (e, (1-1))s Quie, (t-1)): (Qu(eu () Qe (1)) the elementary
distance, added by considering Qu(y, (1)) corresponds to Qy(,, (¢)) knowing that

Qz (e, (t—1)) corresponds to Qy(%(t_l)). The cumulated distance Dist(t) can then
be expressed using the following recursion equation:

Dist(t) = mingq—1){Dist(t — 1) 3)
Fd((Qu (. (t-1))> @y, (t-1)))> (Qu(p (1)) @y, (1))}

In the case of the DTW technique, a discrete solution is provided for the
distortion function ¢ i.e. ¢, and ¢, take discrete values in {1,...,T,} and
{1,...,T,}, respectively. Therefore, a major limitation of this technique is the
use of discrete points in the mapping of the two time-series. Furthermore, the
DTW technique does not give the best 'optimal’ warping path. To improve
this technique, Munich et al. [I0], proposed the Continuous DTW (CDTW)
technique by applying the process of mapping in the continuous domain. In
this case, the distortion function ¢ can take non-integer values as solution of
the equation [3] Therefore, the CDTW technique allows the matching between
sample point of one of the two time-series and another point between two samples
of the other time-series. Unlike DTW, the warping path can pass between points
on the grid vertices (figure b). Thus, the recursion equation is similar to
equation 3| under the following condition: if one of two points of the distortion
function ¢ is an integer value, the second point of the distortion function ¢ can
be a non-integer value. The intermediate matching point generation assumes a
linear interpolation model between sample points, for more details [I0]. Figure
illustrates the principle of the CDTW technique.

4 Results and discussion

Figures[2la and [2lc¢ show the matching between the time-series of two right foot
stance phases in the case of a healthy subject and a PD subject. One can
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Fig. 1: Application of the Continous Dynamic Time Warping (CDTW)[10]

observe that the stance phases of the healthy subject are almost similar (figure
a), unlike those of the PD subject c). The obtained ’optimal’ warping
paths are shown in white in figures 2lb and [2ld. The intensity of the gray
color represents the value of the CDTW distance; the more the gray is darker
the more the distance is higher, and vice-versa. The black lines represent the
‘optimal” warping paths in the case of two identical stance phases. In the case
of a healthy subject, the ’optimal’ warping path is very close to that obtained
with two identical stance phases (figures b). Conversely, for a PD subject, the
‘optimal” warping path is highly deformed and very far from that obtained in
the case of two identical stance phases (figures d).
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Fig. 2: Results obtained with times-series of two right foot stance phases

In order to evaluate the performances of the proposed classification approach,
a 10-fold cross validation is used.Before presenting the classification results, it
is important to describe and set the parameters used in each classifier. The
parameters of each standard classification method are chosen in such a way as
to maximize their performances in terms of PD recognition. In the case of K-
NN classifier, the number of neighbours is set by varying K from 2 to 10. The
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optimal number of neighbours found for the Yogev’s, Hausdorfl’s, and Frenkel-
Toledo’s datasets are, respectively, 3, 2, and 2. For the Decision Tree classifier,
"Cart’ algorithm is used. For Random Forest classifier, the number of trees
is varied from 10 to 500 and the optimal trees number found for the Yogev’s,
Hausdorft’s, and Frenkel-Toledo’s datasets are, respectively, 90, 200 and 300. For
SVM classifier, a linear model is used in the case of Frenkel-Toledo’s dataset, and
a non-linear with polynomial kernel function of degree three in the case of the
other two datasets. For the GMM classifier, a mixture of 2 diagonal Gaussians is
used for the Frenkel-Toledo’s dataset, and a mixture of 2 full Gaussians is used
for the other two datasets. In the case of K-means classifier, the number of classes
is equal to two (Healthy and PD subject classes). Table |1 shows the obtained
performances in terms of accuracy rate and its standard deviation (STD). It
can be noted that for the three datasets, SVM and K-NN classifiers, achieve the
best performances. The accuracy rate obtained using these two classifiers range
from 86 to 97 %. The accuracy rate range from 60 to 73 % using unsupervised

classifiers.

Supervised classifiers Unsupervised classifiers

Dataset Performances | K-NN CART RF SVM K-means GMM

Yogev Accuracy 9288 % 8296 % 89.35% 9357 % || 67.79 % 65.58 %

et al. STD 203% 399% 262% 261 % 1.10 % 7.23 %

Hausdorff Accuracy 9752 % 88.82% 90.02% 95.03% || 65.29 % 73.97 %

et al. STD 1.04% 309% 198% 185 % 2.13 % 4.90 %

Frenkel-Toledo Accuracy 86.02 % 80.02% 8259 % 87.32% || 60.47 % 67.19 %

et al. STD 3.09% 644 % 492% 299 % 1.48 % 8.65 %

Table 1: Accuracy rates and their STD

The performances of the proposed approach have been compared to those
obtained using 5 features selected among 19 standard feature&ﬂ extracted from
the swing, stance, and double stance phases. For this purpose, a wrapper ap-
proach, based on the random forest feature selection algorithm, is used [IT].
Table [2] shows that the use of CDTW distance as distances features give the
best performances. The accuracy rate improvement obtained with K-NN and
SVM classifiers varies from 5 to 12 %.

5 Conclusion and future Work

This paper presents a new approach for the diagnosis of Parkinson’s Disease
(PD). This approach exploits the fact that usually the walking of healthy sub-

I Coefficients of Variation (CsV) in percentage (%) of the Swing Time of the left and right
feet, CsV in duration (s) of the Swing Time of the Left and Right feet, CsV in duration of the
Stride Time of the Left and Right feet, CsV of the Short Swing Time, CsV of the Long Swing
Time, CsV of the Gait Asymmetry, Means in percentage (%) of the Swing Time of the Left
and Right feet, Means in duration (s) of the Swing Time of the Left and Right feet, Means in
duration (s) of the Stride Time of the Left and Right feet, Means in percentage of the Double
Stance Time, Means of the Short Swing Time, Means of the Long Swing Time, and Means of
the Gait Asymmetry.
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Supervised classifiers Unsupervised classifiers

Dataset Features K-NN CART RF SVM K-means GMM
Yogev CDTW |92.88 4+ 2.03% 82.96 + 3.99% 89.35 4+ 2.62% 93.57 +2.61% | 67.79 + 1.10% 65.58 + 7.23%
et al. Standard | 85.39 & 3.49% 82.10 & 3.25% 85.65 + 3.23% 85.02 4+ 4.26% | 63.72 4+ 4.20% 64.77 + 12.64%
Hausdorff | CDTW [97.52 4 1.04% 88.82 & 3.09% 90.02 & 1.98% 95.03 & 1.85%]65.29 &+ 2.13% 73.97 + 4.90%
et al. Standard |91.39 4 2.83% 84.82 4 3.66% 88.77 £ 2.30% 87.70 4 3.26% | 55.12 4 3.59% 65.12 £ 11.08%
Frenkel-Toledo| CDTW |86.02 + 3.09% 80.02 4 6.44% 82.59 & 4.92% 87.32 + 2.99% | 60.47 + 1.48% 67.19 &+ 8.65%
et al. Standard |81.49 4 4.68% 79.01 4 3.72% 81.98 4 4.19% 80.23 4 4.80% | 57.19 & 3.98% 65.31 & 12.12%

Table 2: Accuracy rates and their STD using the CDTW features (4 features)
and the standard features (5 features)

ject is characterised by repetition of gait cycles, while that of PD ones show
significant variations from one gait cycle to another. For this purpose, a mea-
sure of similarity between these cycles carried out using the Continuous Dynamic
Time Warping (CDTW) technique is proposed. The obtained results showed an
improvement in terms of accuracy rate for discriminating healthy subjects from
PD subjects compared to the use of standard features. Ongoing work concerns
the extension of the proposed approach to addressed the multidimensional sim-
ilarity of the stance phase, i.e. the similarity between multiple stance phases.
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