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Abstract. The main incentive of this paper is to provide an enhanced
approach for 2D medical image segmentation based on the Unsupervised
Grow Cut algorithm, a method that requires no prior training. This paper
assumes that the reader is, to some extent, familiar with cellular automata
and their function as they make up the core of this technique. The bench-
marks were performed on 2D MRI images of the heart and chest cavity.
We obtained a significant increase in the output quality as compared to
classical Unsupervised Grow Cut by using standard measures, based on
the existence of accurate ground truth. This increase was obtained by
dynamically altering the local threshold parameter. In conclusion, our ap-
proach provides the opportunity to become a building block of a computer
aided diagnostic system.

1 Introduction

The medical context of the problem at hand is to quantify the degree of my-
ocardium fibrosis located within the left atrium wall, with direct implications on
deriving patient chances of recovery from persistent atrial fibrillation. From a
technical standpoint, this relies on accurately segmenting the left atrium from the
surrounding chest cavity and isolating it from the other 3 heart chambers. Ide-
ally, this process should be unsupervised and fully automatic, yielding accurate
results within a short time frame. To this end, we have analyzed state–of–the–art
approaches and concluded that the most promising solution is the Unsupervised
Grow Cut (UGC) [1] segmentation algorithm, since it is, foremost, autonomous,
requiring minimal input from the end user (radiologist in our case). Moreover,
it scales very well to highly parallel GPU architectures.

The plain-vanilla implementation of the UGC [1] suffers from a few draw-
backs. Its threshold parameter, which governs the granularity of the segmen-
tation, is not constant between different images, requiring manual adjustment.
We propose two novel techniques which aim to overcome this caveat: adaptive

∗The authors highly acknowledge financial support from the Competitiveness Operational
Programme 2014-2020 POC-A1-A1.1.4-E-2015, financed under the European Regional Devel-
opment Fund, project number P37 245. The radiological support of Dr. Simona Manole and
the technical assistance of Cristina Szabo and Silviu Ianc is highly appreciated.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6. 
Available from http://www.i6doc.com/en/.  

67



thresholding, in which the threshold is decreased with iteration count, and pri-
ority thresholding, in which unlabeled pixels from the original image are given
higher priority over already labeled pixels.

The following sections first introduce the reader to a basic UGC algorithm
and the way it functions, followed by our proposed approach and finally con-
cluding with performance and preliminary numerical results.

2 Theoretical background

Image segmentation refers to the task of partitioning an image in sets of regions
and therefore identifying objects of interest inside it. Existing techniques [2, 3]
are still far from being able to fully automatically identify relevant features.

In this process we propose to make use of cellular automata (CAs) where,
through appropriate choice of state transition rules and topologies, we can iden-
tify pixels which belong to the same cluster. In its most basic form, a CA is a
triplet (S,N, ρ), with S being the set of states of each cell N , the cell’s neighbor-
hood and ρ is the state transition function which is applied with each iteration.
The overall evolution of the CA’s state has been shown to successfully model
complex systems.

There are only few attempts in the literature to use CAs for image segmen-
tation, but they confirm the scientific potential of the proposition [3, 4, 5]. One
of the most popular approaches for image segmentation using cellular automata
is given by the Grow Cut algorithm [6], which starts from several labeled seeds
chosen by the user from the pixels of the image and automatically labels all the
other pixels belonging to the image starting from the given seeds. A cellular
automaton is used for propagating the labels of the seeds throughout the whole
image.

There is, however, an autonomous method for CA based image segmenta-
tion which automatically generates random seed points and uses the Grow Cut
algorithm for labeling, the so called Unsupervised Grow Cut (UGC) [1].

3 Proposed approach: adaptive and priority thresholding

The search for an optimal, fully–automatic segmentation algorithm has yet to
yield a suitable result. Focusing on medical images, ideally such a segmentation
procedure should meet the following criteria: fast execution time since the diag-
nostic process should not take more than a couple of minutes; low susceptibility
to noise owing to the fact that MRI images, depending on the resolution of the
scan and the capabilities of the acquisition device, contain various amounts of
input noise; consistency of output, meaning that the results of the segmenta-
tion should be roughly the same if run multiple times on the same input image
and finally high accuracy, approximating as close as possible the result from a
radiologist’s manual segmentation. Cellular automata are very well suited to
parallelization on the CPU/GPU because in order to determine a cell’s current
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state all we need to know is its previous state and the state of all cells in its
neighborhood.

Here we will detail our original contribution in the form of two variations
of the UGC algorithm — adaptive and priority thresholding — followed by a
hybrid approach these. The whole purpose of these techniques is to minimize
noise and the number of unlabeled pixels while retaining region shape and size.

Adaptive Threshold — We thoroughly analyzed the evolution of the CA
at each iteration and considered altering the threshold parameter with respect
to the current iteration, aiming at first to obtain a rough segmentation of the
image with clear distinction between different regions, and then as the iterations
unfold, relax this threshold to merge small isolated pockets of regions, which are
irrelevant to the desired output. We named this approach ”adaptive threshold-
ing” (and the resulting segmentation algorithm is called adaptive UGC). Apart
from the threshold, number of iterations and neighborhood size parameters in-
herited from the UGC algorithm, we introduce two new parameters, namely
batchSize and batchDecrement, which operate on the threshold value in the
following manner: after each batchSize iterations, the threshold is decremented
with batchDecrement. Please refer to section 4 for values of these parameters
and their effect on the output.

Priority Threshold — Owing to the fact that the unlabeled pixels form a
standalone category, we aimed to treat them differently from already labeled pix-
els during the CA update rule (priority UGC). Consider the following situations
for two neighboring pixels P and Q (where Q belongs to the Moore neighbor-
hood of P), where P is the current pixel in the center of the kernel and Q is a
neighbor, trying to exert its influence upon P. If both P and Q are unlabeled,
nothing happens in the current iteration. If both P and Q are labeled, compute
the strength between P and Q and compare against threshold; if true, the label
of P is equivalent to the label of Q. If P is unlabeled and Q is labeled, compute
the strength between P and Q and compare against threshold − tolerance (a
small positive value, making it easier and faster for unlabeled pixels to acquire
a label); if true, P takes the label of Q. By this mechanism we give unlabeled
pixels priority in the labeling process over labeled ones. Finally, if P is labeled
and Q is unlabeled nothing happens in the current iteration.

Hybrid Approach — Here we combine both adaptive and priority thresh-
olding (hybrid UGC), benefits of which will be analyzed in the experimental
results section. We can benefit simultaneously from both the threshold relaxing
technique provided by the adaptive thresholding and the advantage in labeling
black/unlabeled pixels from the priority thresholding. The order in which they
are applied is as follows: first, if the current iteration is a multiple of batchSize,
then the threshold is decremented by batchDecrement units in order to favor
labeling over fighting for pixels. Afterwards, during each iteration, we check
whether the current pixel is unlabeled; if so, we give a higher priority over la-
beled ones for it, and as a consequence, making unlabeled/black pixels acquire
a label earlier on.
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4 Experimental results

We concentrated our efforts on the unsupervised version of the technique known
in literature as the Grow Cut algorithm. In article [1], the authors process 64∗64
images for which 100 seeds are generated; by the rule of direct proportionality,
in our 512∗512 images we should start with 6400 initial seeds, which are reduced
at the end by equivalence to about 700 distinct classes.

The data we used for benchmarking, consisting of 2D MRI scans of the
heart and chest cavity, have been acquired either with a 3T General Electric
MRI scanner available at our IMOGEN Research Institute or via conversion
from 3D Nifti format to a series of Dicom images, from the ”MM-WHS 2017:
Multi-Modality Whole Heart Segmentation” database [7, 8]. Out of the 20 MRI
heart sequences available in this data set we have selected 10 images paired with
existing ground truth elaborated by a trained radiologist, in the form of a binary
labeled image – true for heart and false for surrounding tissue.

4.1 Performance measures

It is very important to establish the way we define similar regions or segments.
The obtained segmentations and their boundaries could be compact, discon-
tinuous, smooth etc. One of the metrics used in our experiments is the Dice
coefficient, which computes the overlap between regions, quantifying the simi-
larity of two segmentations. This measure is especially useful when the volume
changes are of great importance in the analysis process. The Dice similarity co-
efficient [9] (denoted as DICE in this paper) is computed as the ratio between the
number of pixels belonging to the intersection (of two possible segmentations)
and the average of their sizes. Additionally, we also computed the classification
accuracy (viewed as the distance between the real classifier and the modeled
one) which is another important feature of a medical decision model [10].

4.2 Direct comparison

All experiments make use of the smallest, 3 by 3 Moore neighborhood. No post-
processing or other techniques are involved unless specifically stated. Note, the
color scheme of the labels has no medical meaning and is not related to the
features of the pixels. It denotes only that two pixels of the same color belong
to the same region.

Figure 1 contains visual segmentation results of the CA, run for 30 iterations,
obtained by the plain-vanilla UGC (b), adaptive UGC with batchSize 3 and
batchDecrement 0.001 (c), priority UGC, with threshold− tolerance set to 0.05
(d) and hybrid UGC with the same parameters (e) for an MRI image of the heart
and surrounding chest cavity (a) provided by the project’s team of radiologists.

Table 1 contains the obtained numerical results for the 10 images (identified
as 1001 to 1010) taken from [8]. Visceral segmentation evaluator [11] has been
used for computing the following performance measures: Dice coefficient and
accuracy. It can be observed that our proposed Adaptive UGC and, respectively,
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(a) (b) (c) (d) (e)

Fig. 1: (a) Example of an MRI image with the heart and chest cavity. (b)
Plain-vanilla UGC. (c) Adaptive UGC. (d) Priority UGC. (e) Hybrid UGC.

ID
Dice Accuracy

A% P% H% A% P% H%
1001 16±0.02 17±0.02 34±0.04 1.6±0.01 -3.6±0.02 -0.4±0.02
1002 45±0.05 64±0.05 87±0.06 11.0±0.03 11.2±0.04 17.1±0.03
1003 27±0.03 59±0.03 80±0.03 3.4±0.01 4.2±0.02 7.1±0.01
1004 29±0.04 52±0.03 77±0.03 3.6±0.03 1.1±0.03 5.0±0.02
1005 35±0.03 70±0.03 94±0.03 3.0±0.01 1.8±0.01 3.5±0.01
1006 37±0.02 83±0.02 109±0.02 2.4±0.01 0.7±0.01 1.5±0.01
1007 32±0.03 58±0.02 79±0.03 4.3±0.01 5.3±0.01 8.4±0.01
1008 24±0.02 43±0.01 55±0.04 1.8±0.01 -1.7±0.01 -0.6±0.02
1009 24±0.05 30±0.05 42±0.04 4.5±0.02 4.4±0.02 6.7±0.01
1010 26±0.03 40±0.03 53±0.03 4.5±0.01 4.0±0.01 6.3±0.01

Table 1: Benchmark results showing percentage increase in quality over plain
UGC. Due to the inherent nondeterministic property of the UGC algorithm,
mean and standard deviation were extracted from a set of 30 trials per im-
age. A% - adaptive UGC, P% - priority UGC, H% - hybrid UGC respectively
(computed as (UGCType− UGCPlain)/UGCPlain ∗ 100).

Priority UGC improve significantly over the classical UGC. Moreover, the hybrid
approach combining Adaptive UGC and Priority UGC, provides even better
results (Table 1).

Apart from a few cases, there can be noticed a significant increase in the
accuracy and Dice coefficient when comparing to the ground truth image. The
increase in quality is also observed as we progressively apply our adaptive and
priority thresholding techniques, starting from plain-vanilla UGC, going through
adaptive, priority and finally hybrid thresholding. The quality of the segmenta-
tion and fast execution time, in the order of a few seconds, owing to its OpenCL
implementation, opens up an application possibility for other type of medical
images.
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5 Conclusions

In this work we present an improved version of the classical UGC algorithm that
is well-suited to medical image segmentation. Our main contribution is an adap-
tive thresholding in which the threshold is decreased with iteration count, and a
priority thresholding, in which unlabeled pixels from the original image are given
higher priority over already labeled ones. We obtained a significant increase in
the quality of the output by dynamically altering the local threshold param-
eter, which determines the granularity of the segmentation. Additionally, the
method could be easily extended to 3D image segmentation task, requiring min-
imal adaptation of the parameters due to the increased number of interactions
among neighboring voxels. Our approach, albeit it is still in research phase,
could potentially be used as a building block of a computer-aided diagnostic
(CAD) system.
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