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Abstract. Bio-inspired computing has been a relevant topic in scientific, 
computing and engineering fields in recent years. Most bio-inspired metaheuristics 
model a specific phenomenon or mechanism based on which they tackle 
optimization problems. This paper introduced the meerkats-inspired algorithm 
(MEA) a novel population-based swarm intelligence algorithm for global 
optimization in the continuous domain. The performance of MEA is showcased on 
six classical constrained engineering problems from literature. Numerical results 
and comparisons with other state of the art stochastic algorithms are also provided. 
Results analysis reveal that the MEA produced consistent results when compared 
with other optimizers. 

1 Introduction 

During the past decade, solving complex optimization problems with metaheuristic 
algorithms has received considerable attention among practitioners and researchers. 
Hence, many metaheuristic algorithms [1-3] have been developed over the last years. 

The No Free Lunch theorem [4] states that no single algorithm can perform well on 
every optimization problem, encouraging the development of new metaheuristics. 
These techniques are generally inspired from various everyday phenomena and are 
predominantly nature inspired. 

The proposed meerkat-inspired algorithm (MEA) is based on the meerkat behavior 
analysis related in [5,6]. The main idea is to use the animal behavior not only for the 
optimization strategy, but also for the parameter selection. This means only one 
parameter is selectable by user for MEA, and it stands for the initial population size. 
These base papers [5,6] show the examination of meerkats groups, their relationships 
and social organization across a 7-year dataset. The biological research was conducted 
in the Kalahari Gemsbok National Park, republic of South Africa. This national park 
has 38,000 km2, interfacing with other wildlife park in Botswana. 

In this paper, six benchmarks extracted from the IEEE CEC2014 (The Institute of 
Electrical and Electronics Engineers, Congress on Evolutionary Computation 2014) 
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competition [7] were adopted in order to check the performance of the proposed MEA 
when compared with state-of-art optimizers in the recent literature. 

The remainder of this paper is organized as follows. The fundamental and the 
flowchart of MEA are explained in Section 2. After, Section 3 presents the setup for 
the experiments and the results analysis to three benchmark optimization problems. 
Finally, a conclusion and the future research is outlined in Section 4. 

2 Fundamentals of the Meerkat-inspired Algorithm (MEA) 

A survey on 1999, counted 33 different groups of meerkats leaving mainly on river 
beds [5]. Ten of those groups lived in about 100 km2. Those groups did not travel 
more than 500 meters towards the dunes which are in the river neighborhood. Each 
group occupied around 5 km2. Groups composition was, in average, equalitarian 
between females and males (1.89 males, 1.90 females and 1.03 juveniles). In 1994, 
groups have from 3 up to 14 individuals. 

Litters are coming up in all months of the year except in July, with an average of 
0.14±0.1 litter per month. Rainfall is one of the most important triggers to reproduction 
that could take from 1.8 up to 2.7 litter per group per year. Around 80% of pregnancies 
are from the dominant females and they can produce up to four litter per year. Litter 
size is ranging from 1 to 8 individuals and in average 4.1±1.5. 

Dominant members were older and heavier than other group members. Females 
begin to breed between 24 and 36 months. There is no significant difference on 
mortality between sexes or ages. The annual mortality rate of adults was 0.68, however 
the rainfall rate can impact breeding and so a decline in rainfall can bring the groups in 
half size in one year period. These mentioned features were inspiration to develop the 
proposed MEA. 

In the MEA, the mathematical representation of a meerkat groups considers only 
one control (constructive) parameter, N, that stands for the initial population size, 
which must be pair once the initial groups shall be formed by a male and a female 
individuals. The mathematical implementation follows the idea that each interaction 
corresponds to a chronological month for a given population, called here month-life. 

Individual positions are initialized randomly and the nearest partners are grouped 
forming a couple. All individuals are then evaluated on the cost function and the best 
answer and best fitness are recorded. The initialized elements are always considered to 
be adults once the algorithm takes different strategies for adults and non-adult. All 
individuals are listed in a matrix where each line stands for an individual position and 
columns are arranged like the Fig. 1. 
 

Element  
[1 - Dim] 

Fitness Age Gender Group Dominance 
Special 
attribute 

Sequence 
number 

Fig. 1: Individual arrangement adopted in the MEA. 
 

The first step on the searching loop is to calculate the group centers taken in 
consideration the group range. The maximum group range is stated proportionally as it 
is in biology, 5km2/100km2 which leads each group to have 5% of the total searching 
field. 
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Group individuals are then moved according to their sex, breed rate and the group 
center. The breed rate is initiated in the first loop with maximum number but at the end 
of each interactive loop the breed rate is calculated according to the groups prosperity 
which is taken as the fitness progress or analog to the rainfall in nature. 

First group to be moved is the adult one. The movement for this group is ruled by: 
 

x(k) = x(k-1) + rr · [xr1(k-1) - x(k-1)],                                  (1) 
 
where x stands for the individual position, k for the sample time, rr is the running rate 
and xr1  is a random selected adult position from the historical data using uniform 
distribution in range [0,1]. The new position for each individual will only be assumed 
if it is better than the actual one. 

The second group to be moved is the newborns. Newborns are cared by the nurse 
individuals or by their mothers. If the mother is alive the movement is given by: 
 

x(k) = x(k-1) + rr · r3 · [xmother - x(k-1)] + r,                           (2) 
 
where r3 is a random number generated using uniform distribution in range [0,1],  
xmother  is the mother’s position and r is a noise signal generated using uniform 
distribution in range [0,1]. The parameter rr is an unitary gain which decreases 
proportionally to the optimization goal achievement. 

Newborns can be moved according to the group center if their mothers dead. This 
movement is given by: 
 

x(k) = x(k-1) + rr · r3 · [xcenter - x(k-1)] + r,                           (3) 
 
where xcenter  is the group’s central position. Newborn’s new position is assumed either 
way if it is better or not in relation to the actual one.  

When all individuals have moved, then the mating operation takes place. Mating 
males are selected according to their size in the groups, which are related to the 
problem fitness values. Bigger males, which have a better fitness values, have more 
chance than smaller ones as the domination rule.  The number of newborns for each 
female is randomly chosen between 2 and 6, but this number is multiplied by the rain 
fall rate. 

Newborns are also formed in relation to parents domination. If the male is bigger 
(better fitness) than the female, the newborn is formed as: 
 

x(k) = xmale + r · [xfemale - xmale] + r-1,                                   (4) 
 
where xmale  is the male position,  xfemale  is the female position, r is a random number 
generated using uniform distribution in range [0,1]  and   r-1 is noise signal generated 
using uniform distribution in range [-1,1]. On the contrary, if the female is the 
dominant one, then the breed is according to: 
 

x(k) = xfemale + r · [xmale - xfemale] + r-1,                                (5) 
 

After, new individuals are evaluated and ranked. MEA works with the annual grow 
rate as unitary and so the number of newborns in one year period will be taken out 
from the population. The death part of the algorithm keeps the sharing rate between 
males and females and also selects the weaker individuals as the less adapted ones.  
When the population movement, mating and death are over, the group performance is 
checked. This calculation is made using: 
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grpperf =1 - (FSnewgroup - FStarget ) /  (FSbest - FStarget ) ,              (6) 
 
where grpperf  is the actual group performance, FSnewgroup is the best actual fitness for 
the group, FSbest is the best actual fitness for the population and FStarget is the fitness 
goal. The running rate, used on the movement equations is taken from the Table 1 
values. Table 1 serves to relate the group performance with other two dimensions 
called performance rate and running rate. They are dynamically accessed by the group 
performance as a look-up table in order to calculate and adjust the algorithm methods.    

Parameter Value 1 Value 2 Value 3 
Group performance 0 0.5 1 
Performance rate 0.75 1.7 3.5 
Running rate 1 0.5 0.01 

Table 1: Group performance, performance rate, and running rate adopted in the MEA.
  

The searching loop will be running up to the maximum number of function 
evaluation to be reached or if the optimization error is less than the minimum 
acceptable error. Figure 1 shows the flowchart of the proposed MEA. 

 

Fig. 1: Flowchart of the proposed MEA. 

3 Benchmark Functions and Compared Optimizers  

In the IEEE CEC2014 benchmarks competition [7], the searching field was 
bounded in a continuous range [-100, 100]. In order to assure some statistical analysis, 
all optimization algorithms run all problems 25 times with different random numbers 
initial seed, but it is the same among all algorithms. The maximum number of function 
evaluations allowed for all optimizers was set to 105 and tolerance (maximum error) 
against the objective function value was set to 10-8. This means all optimizers will stop 
searching when the objective function error is smaller than 10-8 or the number of 
function evaluations is greater than 105. The optimization metaheuristics adopted to 
MBA comparison including: differential evolution (DE) [8], particle swarm 
optimization (PSO) [9], fireworks algorithm (FA) [10], grey wolf optimizer (GWO) 
[11], flower pollination (FPA) [12], JADE [13] and social spider optimizer (SSO) [14].  
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4 Results Analysis 

The results for six unconstrained benchmarks of the IEEE CEC2014 competition 
[8] for dimension D equal to 100 are summarized in Figure 2. 

One can see that for the shifted and rotated Ackley function on Figure 2(a), MEA 
has presented the best median value, having some of outlier results near to FA. For the 
second problem tested, shifted and rotated Rastrigin function, presented on Figure 2(b), 
the best median results were reached by JADE, however MEA had the second best 
performance, showing also a small quartiles and percentiles span. 

The third problem tested was the shifted and rotated Schwefel function. Its results 
can be checked on Figure 2(c). MEA has presented the best median performance and 
its results can only be compared to JADE when the result dispersion is taken into 
account. MEA achieved the second best median result for the shifted and rotated 
Katsuura function, shown on Figure 2(d). JADE presented the best median value for 
that problem and the GWO had an outlier better than the MEA results for one run. 

Shifted and rotated expanded Scaffer function best median value was achieved by 
JADE, as shown in Figure 2(e). MEA had presented the second best median results, 
and if the result dispersion is taken into account the GWO results can be within MEA 
range. The last problem tested is a composition of two benchmark functions and its 
results can be seen on Figure 2(f). One can see that DE, FA, JADE and MEA achieved 
comparable performance in terms of median objective function values, however MEA 
presented two worse outliers. 

 
 

 
(a) shifted and rotated Ackley 

function 
(b) shifted and rotated 

Rastrigin function 
(c) shifted and rotated 

Schwefel function 

   
(d) shifted and rotated 

Katsuura function 
(e) shifted and rotated 

expanded Scaffer function 
(f) Griewank+Rosenbrock 

function 
Fig. 2: Optimization results to six IEEE CEC2014 benchmark functions (D = 100). 
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5 Conclusion and future research 

In this paper, we propose a new bio-inspired MEA to solve global optimization 
problems with continuous variables. This new method has only one parameter that 
stands for the initial population size. In the current work, the performance of MEA 
method is experimentally tested only using six benchmark optimization problems. This 
paper is a preliminary study opening up a wide range of possibilities for further 
improvement and extension. In the future research, we will apply the proposed MEA 
and its multiobjective form to solve large-scale optimization case studies. 
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