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Abstract. Recently, new promising theoretical results, techniques, and

methodologies have attracted the attention of many researchers and have

allowed to broaden the range of applications in which machine learning

can be effectively applied in order to extract useful and actionable infor-

mation from the huge amount of heterogeneous data produced everyday

by an increasingly digital world. Examples of these methods and prob-

lems are: learning under privacy and anonymity constraints, learning from

structured, semi-structured, multi-modal (heterogeneous) data, construc-

tive machine learning, reliable machine learning, learning to learn, mixing

deep and structured learning, semantics-enabled recommender systems, re-

producibility and interpretability in machine learning, human-in-the-loop,

adversarial learning. The focus of this special session is to attract both

solid contributions or preliminary results which show the potentiality and

the limitations of new ideas, refinements, or contaminations between the

different fields of machine learning and other fields of research in solving

real world problems. Both theoretical and practical results are welcome

to our special session.

1 Introduction

Recently, new promising theoretical results, techniques, and methodologies have

attracted the attention of many researchers and have allowed to broaden the

range of applications in which machine learning can be effectively applied in

order to extract useful and actionable information from the huge amount of

heterogeneous data produced everyday by an increasingly digital world.

One important field of research is the privacy-preserving data mining that

is being studied extensively, because of the wide proliferation of sensitive in-

formation on the internet [1]. A number of algorithmic techniques have been

designed for privacy-preserving data mining. Different methods for randomiza-

tion, k-anonymization, and distributed privacy-preserving data mining have been
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proposed [2]. Other researchers discuss cases in which the output of data mining

applications needs to be sanitized for privacy-preservation purposes. Compu-

tational and theoretical limits associated with privacy-preservation over high

dimensional data sets have been also investigated [3, 4, 5]. It is important to

highlight how this field of research has deep connections to the novel idea of fair

machine learning, where the goal is to generate a model avoiding any discrim-

inatory behavior with respect to a sensitive feature, e.g. gender, ethnic group

and others [6, 7, 8].

Another relevant research field is the application of machine learning tech-

niques to structured data [9, 10]. Indeed, in many application domains, it can

be difficult to encode data in a fixed vectorial representation, while it can be

more natural to represent it in a structured form. The simplest form of struc-

tured data are sequences, that can naturally encode text, protein sequences,

event logs [11, 12]. Trees allow more flexibility with respect to sequences, and

can encode more complex information. Trees can naturally encode, for instance,

XML documents or parse trees of sentences (widely used in natural language

processing) [13]. The more general form of structured data are graphs. Relevant

domains where learning techniques for graph data has been successfully applied

include computer vision, where each image can be represented by its segmen-

tation graph [14]. Moreover, in Chemoinformatics chemical compounds can be

represented as graphs, where each atom is a vertex and the edges represent the

bonds between atoms [15]. Another class of techniques that involve the analysis

of the nodes in huge graphs, motivated mainly by social networks analysis, have

been introduced [16, 17].

Very recently, researchers are exploring a field referred to as constructive

machine learning, where the output, in contrast with the classic classification or

regression settings, is itself a structure. The main challenge of this task is to

generate outputs that exhibits some of the properties of the inputs, without being

too similar to the training instances [18, 19]. The ultimate goal of constructive

machine learning is not to find a good model for predicting properties of the data,

but instead to find one or more particular instances of the domain which are likely

to exhibit desired properties. While traditional approaches choose these domain

instances from a given set/databases of unlabeled domain instances, constructive

machine learning is typically iterative and searches an infinite or exponentially

large instance space [20].

Another important rising topic in machine learning is how to make it more

reliable. Reliable machine learning has to deal with basically five important

aspects: robustness, awareness, adaptation, value learning, and monitoring [21,

22, 23, 24, 25]. This implies to answer many possible questions touching on each

of these categories. For example in order to create a robust system we have to

make it robust to novel or potentially adversarial inputs and we have to handle
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model misspecification or corrupted training data.

In order to create an aware system and make it aware of its environment

and of its own limitations, we have to successfully identify “strange” inputs or

situations and take appropriately conservative actions, we have to detect when

changes in the environment have occurred that require re-training, and we have

to detect that its model might be misspecified or poorly-calibrated. For what

concerns adaptation, the machine learning system must detect and adapt itself

to changes in its environment, especially large changes, and has to act properly

when confronting radically new contexts. With respect to value learning we have

to learn a value function that captures and balances all relevant considerations,

we have to handle uncertainty about its value function, and we have to make

sure that a system reflects the values of the humans who use it. Finally, respect

to monitoring we have to monitor large-scale systems in order to judge if they

are performing well and if things go wrong we have to fit it.

Another recent topic of research is the learning to learn or meta-learning [26,

27, 28]. The aim of meta-learning is a lifting of a standard machine learning

problem: the task is to learn an algorithm capable of solving ground learning

problems originated by a unknown distribution. A meta-dataset is thus a (pos-

sibly infinite) collection of datasets, or episodes, sampled from the unknown dis-

tribution, where each dataset is linked to a specific task. Specifically, the goal is

to learn an algorithm capable of “producing” ground models. The meta-learner

is viewed as a function which maps datasets to models (or weights), effectively

making it a (non-standard, usually highly parametrized) learning algorithm.

Since the ground models should exhibit good generalization performances on

their specific task, each dataset can be split into training and validation sets,

and the meta-learner can be trained to minimize the average validation error

over tasks, which constitutes a natural outer objective in this setting [29].

In the last few years, several research groups are working on the problem

of learning meaningful representations for complex data. Recent literature has

shown the merits of having deep representations in the context of neural net-

works. The ideas are not new [30], but several proposals appeared in literature

very recently [31, 32], sharing the goal of defining deep neural networks directly

over structured data. An emerging challenge in kernel learning is the definition

of similar multilayer [17], adaptive representations [33]. The research on this

topic is still on its infancy, and the attention of the community to this topic is

increasing.

Recommender systems are a well studied family of methods. These methods

are used in different applications to help users exploring possibly interesting

items. Usually, they exploit the preferences expressed in form of ratings. In the

last years, the so-called content-based recommender systems has become very

popular. They suggest the items that are similar to those the users previously
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positively rated [34]. The first methods used simple retrieval models, for example

the Vector Space Model. Due to the great interest from academia and companies

(e.g. Google, Amazon and others), a new trend of research is arising. This

trend studies the description of the items enriching the recommendation by using

semantic knowledge. Consequently, content-based recommender systems evolved

employing external sources of information, like ontologies, in order to improve

their accuracy [34, 35]. Recent approaches are based, among others, on deep

learning [36] or word embeddings [37]. As a future prospective, the researchers

are combining in synergy semantic technologies with cognitive computing [38],

in order to create new cognitive recommender systems.

Another big problem is reproducibility and interpretability of machine learn-

ing. Papers from the Machine Learning community are supposed to be a valuable

asset. They can help to inform and inspire future research. They can be a useful

educational tool for students. They can give guidance to applied researchers in

industry. Reproducibility [39, 40, 41, 42], while not always possible in science

(consider the study of a transient astrological phenomenon like a passing comet),

is a powerful criteria for improving the quality of research. A result which is

reproducible is more likely to be robust and meaningful and rules out many

types of experimenter error (either fraud or accidental). Contemporary machine

learning has a huge potential to improve products, processes and research but

interpretability is a crucial problem [43, 44, 45]. In fact, machines usually don’t

give an explanation for their predictions, which hurts trust and creates a bar-

rier for the adoption of machine learning. Many works try to find answers to

important questions such as: can everyone trust the learned model? The model

might perform well on the training data, but are the learned associations general

enough to transfer to new data? Are there some oddities in the training data

which the machine learning model dutifully picked up?

Human-in-the-loop leverages both human and machine intelligence to gener-

ate machine learning models [46, 47]. In the human-in-the-loop approach, people

are involved in a virtuous circle where they train, tune, and test a particular al-

gorithm. Human-in-the-loop is in clear opposition with respect to the so called

Automatic Machine Learning, where the goal is to bring the humans out-of-the-

loop. On the other hand, several real world applications contain missing data,

noisy sources, unwanted information, and some problems in the domain could be

hard to solve. This set of problems makes the application of automated meth-

ods difficult or, in certain cases, impossible. In fact, the quality of results from

automatic approaches in these task might be questionable (e.g. methods applied

on medical data [48]).

Finally a quite interesting and relatively novel research field is the adversarial

machine learning, that lies at the intersection of machine learning and computer

security [49]. It aims to enable the safe adoption of machine learning techniques
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in adversarial settings. The problem arises from the fact that machine learn-

ing techniques were originally designed for stationary environments in which the

training and test data are assumed to be generated from the same (although

possibly unknown) distribution. In the presence of intelligent and adaptive ad-

versaries, however, this working hypothesis is likely to be violated: a malicious

adversary can carefully manipulate the input data exploiting specific vulnera-

bilities of learning algorithms to compromise the whole system security [50, 51].

Evasion attacks are the most prevalent type of attack that may be encountered

in adversarial settings during system operation. In the evasion setting, malicious

samples are modified at test time to evade detection; that is, to be misclassified

as legitimate. No influence over the training data is assumed. When instead

the data used for training purposes varies in time an attacker may poison the

training data by injecting carefully designed samples to eventually compromise

the whole learning process. This type of impairment is called poisoning attack.

This special session (SS) have attracted both solid contributions and pre-

liminary results which show the potentiality and the limitations of new ideas,

refinements, or contaminations between the different fields of machine learning

and other fields of research in solving real world problems. Both theoretical and

practical results have been submitted to our special session. Eight papers have

been accepted and we will describe them in the next section.

2 Accepted Works

The first work accepted in our SS is entitled Finding the most interpretable MDS

rotation for sparse linear models based on external features [52]. Authors state

that one approach to interpreting multidimensional scaling (MDS) embeddings is

to estimate a linear relationship between the MDS dimensions and a set of exter-

nal features. However, because MDS only preserves distances between instances,

the MDS embedding is invariant to rotation As a result, the weights character-

izing this linear relationship are arbitrary and difficult to interpret. Authors

proposes a procedure for selecting the most pertinent rotation for interpreting a

two dimension MDS embedding.

The second work accepted in our SS in entitled Mixture of Hidden Markov

Models as Tree Encoder [53]. The paper introduces a new probabilistic tree

encoder based on a mixture of Bottom-up Hidden Tree Markov Models. The

ability to recognize similar structures in data is experimentally assessed both

in clusterization and classification tasks. The results of these preliminary ex-

periments suggest that the model can be successfully used to compress the tree

structure and label patterns in a vectorial representation.

The third work accepted in our SS in entitled Differential private relevance

learning [54]. In this paper it is observed that digital information is collected
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daily in growing volumes and mutual benefits drive the demand for the exchange

and publication of data among parties. However, it is often unclear how to handle

these data properly in the case that the data contains sensitive information.

Differential privacy has become a powerful principle for privacy-preserving data

analysis tasks in the last few years, since it entails a formal privacy guarantee for

such settings. This is obtained by a separation of the utility of the database and

the risk of an individual to lose his/her privacy. In this paper, authors introduced

the Laplace mechanism and a stochastic gradient descent methodology which

guarantee differential privacy [55]. Then, authors show how these paradigms

can be incorporated into two popular machine learning algorithm, namely GLVQ

and GMLVQ. Authors demonstrate the results of privacy-preserving LVQ based

on three benchmarks.

The fourth work accepted in our SS in entitled On aggregation in ranking

median regression [56]. In this work authors observed that the present era of

personalized customer services and recommender systems, predicting the pref-

erences of an individual/user over a set of items indexed by [[n]] = {1, · · · , n},
n ≥ 1, based on its characteristics, modelled as a r.v. X say, is an ubiquitous

issue. Though easy to state, this predictive problem referered to as ranking me-

dian regression (RMR in short) is very difficult to solve in practice. The major

challenge lies in the fact that, here, the (discrete) output space is the symmetric

group Sn, composed of all permutations of [[n]] , of explosive cardinality n!,

and which is not a subset of a vector space. It is thus far from straightforward

to build predictive rules taking their values in Sn, except by means of ranking

aggregation techniques implemented at a local level, as proposed in [57] or [58].

However, such local learning techniques exhibit high instability and it is the

main goal of this paper to investigate to which extent Kemeny ranking aggrega-

tion of randomized RMR rules may remedy this drawback. Beyond a theoretical

analysis establishing its validity, the relevance of this novel ensemble learning

technique is supported by experimental results.

The fifth work accepted in our SS in entitled LANN-DSVD: A new privacy-

preserving distributed algorithm for machine learning [59]. In this work authors

observed that in the Big Data era new challenges have arisen in machine learning

related with the Volume (high number of samples or variables), the Velocity, etc.

making many of the classic and brilliant methods not applicable. One main con-

cern derives from Privacy issues when data is distributed and cannot be shared

among locations. In their work, authors present LANN-DSVD, a non itera-

tive algorithm for One-Layer Neural Networks that allows distributed learning

guaranteeing privacy. Moreover, it is non iterative, parameter-free and provides

incremental learning, thus making it very suitable to manage huge and/or con-

tinuous data. Results demonstrate its competitiveness both in efficiency and

efficacy.
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The sixth work accepted in our SS in entitled Set point thresholds from topo-

logical data analysis and an outlier detector [60]. In this work authors provide

an algorithm for unsupervised or semi-supervised learning to determine, once

the input settings are given, a very easily described zone of optimal execution

settings for a production. A region is very easily described if anyone can deter-

mine whether a point is inside it and select a point on it with a certain range of

choice. This can be applied both in production optimization and in predictive

maintenance. Part of the method is based on a topological data analysis tool:

Mapper. Authors also provide a method to detect outliers on new data.

The seventh work accepted in our SS in entitled Vector Field Based Neural

Networks [61]. In this work authors states that a novel Neural Network archi-

tecture is proposed using the mathematically and physically rich idea of vector

fields as hidden layers to perform nonlinear transformations in the data. The

data points are interpreted as particles moving along a flow defined by the vector

field which intuitively represents the desired movement to enable classification.

The architecture moves the data points from their original configuration to a new

one following the streamlines of the vector field with the objective of achieving

a final configuration where classes are separable. An optimization problem is

solved through gradient descent to learn this vector field.

The eighth work accepted in our SS in entitled Temporal transfer learning

for drift adaptation [62]. Whereas detecting and adapting to concept drift has

been well studied, predicting temporal drift of decision boundaries has received

much less attention. This paper proposes a method for drift prediction, drift

projection, and active-learning for adjusting the projected decision boundary

so as to regain accuracy with minimal additional labeled samples. The method

works with different underlying learning algorithms. Results on several data sets

with translational and rotational drift and corresponding boundary projection

show regained accuracy with significantly fewer labeled samples, even in the

presence of noisy drift.
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