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Abstract. We consider regression models involving multilayer percep-
trons (MLP) with rectified linear unit (ReLu) functions for hidden units.
It is a difficult task to study statistical properties of such models for several
reasons: A first difficulty is that these activation functions are not differ-
entiable everywhere, a second reason is also that in practice these models
may be heavily overparametrized. In general, the estimation of the pa-
rameters of the MLP is done by minimizing a cost function, we focus here
on the sum of square errors (SSE) which is the standard cost function for
regression purpose. In this framework, we can characterize the asymptotic
behavior of the SSE of estimated models which give information on the
possible overfitting of such models. This task is done using recent method-
ology introduced to deal with models with a loss of identifiability which is
very flexible. So, we don’t have to assume that a true model exits or that
a finite set of parameters realize the best regression function.

1 Introduction

Feed-forward neural networks are well known and popular tools. These networks
have gained in popularity since the surge of Deep Learning which provides out-
standing practical results. Deep neural networks combine a cascade of multiple
layers of non linear processing units and the ReLu function is now one of the
most popular activation functions for such networks (see Lecun et al.[4]). Even
if these networks work very well in practice, very few theoretical results are
available about such complex models. We propose in this paper to fill a little bit
this gap, hence we focus only on shallow networks with only one hidden layer,
but we deal with ReLu activation functions for the hidden layer. We may hope,
that our methodology may be extended to more complex networks. This paper
is organized as follows: Firstly, we give a general inequality for the difference of
the sum of square errors (SSE) of the estimated regression model and the SSE
of the theoretical best regression function in our model. A set of generalized
derivative functions is a key tool in deriving such inequality. Under suitable
conditions, checked by MLP with ReLu hidden units, we provide the asymptotic
distribution for the difference of SSE even if these models are not differentiable
everywhere and if the parameters characterizing the best regression function are
not unique and belong to an infinite set.
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2 The model

For an observation x ∈ Rd, an MLP function with k hidden units can be written:

fθ(x) = β +
k∑
i=1

aiφ
(
bi + wTi x

)
with θ = (β, a1, · · · , ak, b1, · · · , bk, w11, · · · , w1d, · · · , wkd) ⊂ R2k+1+k×d the pa-

rameter vector of the model, and wi := (wi1, · · · , wid)T . Let us denote Θ ⊂
R2k+1+k×d the possible bounded set of parameters. The transfer function φ
will be assumed to be a ReLu function: φ(z) = max(0, z) for z ∈ R. Note
that this function is not differentiable with respect to z = 0. We observe
a random sample of independent and identically distributed random vectors:
(X1, Y1), · · · , (Xn, Yn), from the distribution P of a vector (X,Y ), with Y a real
random variable. The regression model can be written as:

Y = f0(X) + ε, E (ε |X ) = 0, E
(
ε2 |X

)
= σ2 <∞. (1)

where f0 is the best regression function which belongs to the set {fθ, θ ∈ Θ}:

f0 = arg min
θ∈Θ
‖Y − fθ(X)‖2,

where, a general random variable Z,

‖g(Z)‖2 :=

√∫
g(z)2dP (z)

is the L2 norm for ageneral square integrable function g. Let us write Θ0 the
set of parameters realizing the best regression function f0: ∀θ ∈ Θ0, fθ = f0.
Note that we do not assume that Θ0 is a finite set which means that loss of
identifiability can occur, this is the case if the MLP has redundant hidden units
(see Fukumizu [1] or Rynkiewicz [5]). A natural estimator of f0 is the least
square estimator (LSE) fθ̂ that minimizes the SSE:

fθ̂ = arg min
θ∈Θ

n∑
t=1

(Yt − fθ(Xt))
2. (2)

fθ̂ is expected to converge to the function f0 under suitable conditions. Now,
let us introduce generalized derivative functions:

dθ(x) =
fθ(x)− f0(x)

‖fθ(X)− f0(X)‖2
, fθ 6= f0. (3)

Note that these functions are always defined even if the functions fθ are not
differentiable everywhere. We give now the main results of this paper.
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2.1 Upper bound for the SSE

This lemma is proven in Rynkiewicz [5], it gives a very general upper bound for
the sum of square errors.

Lemma 2.1 Let εt be the error Yt−f0(Xt), for all regression functions fθ, θ ∈ Θ
with fθ 6= f0 and dθ defined in (3), then

n∑
t=1

(Yt − f0(Xt))
2 −

n∑
t=1

(Yt − fθ(Xt))
2 ≤

(∑n
t=1 εtdθ(Xt)√

n

)2

∑n
t=1(dθ(Xt))

2

n

.

Using this lemma, we can then give the asymptotic behavior of the SSE under
fairly general assumptions.

2.2 Approximation of the SSE

First, we recall that a family of random sequences

{Yn(g), g ∈ G, n = 1, 2, · · · }

is said to be uniformly oP (1) if for every δ > 0 and ε > 0 there exists a constant
N(δ, ε) such that

P

(
sup
g∈G
|Yn(g)| < ε

)
≥ 1− δ

for all n ≥ N(δ, ε). Define the limit set of derivatives D as the set of functions
d ∈ L2(P ) such that one can find a sequence (θn) ∈ Θ satisfying ‖fθn(X) −
f0(X)‖2 −−−−→

n→∞
0 and

‖d − dθn‖2 −−−−→n→∞
0. With such (θn), define, for all t ∈ [0, 1], ft = fθn , where

n ≤ 1
t < n+1. We thus have that, for any d ∈ D, there exists a parametric path

(fθt)0≤t≤α with α a strictly positive real number, such that for any t ∈ [0, α],
t 7→ ‖fθt(X)−f0(X)‖2 is continuous, tends to 0 as t tends to 0 and ‖d−dθt‖2 → 0
as t tends to 0. Using the reparameterization

‖fu(X)− f0(X)‖2 = u, (4)

for any d ∈ D, there exists a parametric path (fu)0≤u≤α such that:∫
(fu − f0 − ud)

2
dP = o(u2). (5)

Now, let us introduce some assumptions:

B-1 Let u be defined as (4), the map u 7→ P (Y −fu(X))2 admits a second-order

Taylor expansion with strictly positive second derivative ∂2P (Y−fu(X))2

∂u2 at
u = 0.

B-2 The set of generalized derivative functions S = {dθ, θ ∈ {Θ\Θ0}} is a
Donsker class (see van der Vaart [6], for definition of Donsker class).
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The following theorem is proven in Rynkiewicz [5].

Theorem 2.2 Under (B-1) and (B-2)

supfθ,θ∈Θ

(∑n
t=1 (Yt − f0(Xt))

2 − (Yt − fθ(Xt))
2
)

=

supd∈D

(
max

{
1√
n

∑n
t=1 εtd(Xt); 0

})2

+ oP (1).

Even when the set of possible regression functions F may be heavily over-
parametrized or not differentiable, this theorem proves the tightness of the SSE,
if the set S is a Donsker class. Note that assumption B-1 is true for MLP with
ReLu hidden units even if the functions fθ are not differentiable everywhere be-
cause it involves only differentiability in quadratic mean as in Le Cam [3]. Now,
using the same reparametrization technique and following the same ideas that in
Rynkiewicz [5], we can prove assumption B-2 and give the general description
of the asymptotic behavior of the SSE:

Reparameterization. If k0 is the minimal number of hidden units to get the
best function f0, then the writing of f0 with a neural network with k0 hidden
units is unique, up to some permutations:

f0 = β0 +

k0∑
i=1

a0
iφ
(
w0
i
T
x+ b0i

)
. (6)

So, for a θ ∈ Θ, if fθ = f0, a vector of integers t = (ti)1≤i≤k0+1 exists so
that 0 ≤ t1 ≤ k − k0 < t2 < · · · < tk0+1 ≤ k and, up to permutations,
we have w1 = · · · = wt1 = 0 if t1 > 0,

(
wti+1 = · · · = wti+1 = w0

i

)
1≤i≤k0 ,(

bti+1 = · · · = bti+1 = b0i
)

1≤i≤k0 ,
(∑ti+1

j=ti+1 aj = a0
i

)
1≤i≤k0

.

Moreover, β +
∑t1
i=1 aiφ(bi) = β0 if t1 > 0 else β = β0.

For 1 ≤ i ≤ k0, let us define si =
∑ti+1

j=ti+1 aj − a0
i and, if

∑ti+1

ti+1 aj 6= 0, let

us write qj =
aj∑ti+1
ti+1 aj

. If
∑ti+1

ti+1 aj = 0, qj will be set at 0. Now, let us write

γ = β +
∑t1
i=1 aiφ(bi)− β0 if t1 > 0 else γ = β − β0.

Then, we get the reparameterization θ 7→ (Φt, ψt) with

Φt =
(
γ, (wj)

tk0+1

j=t1
, (bj)

tk0+1

j=t1
, (si)

k0

i=1, (aj)
k
tk0+1+1

)
,

ψt =
(

(qj)
tk0+1

j=t1
, (wi, bi)

k
i=1+tk0+1

)
.

With this parameterization, for a fixed t, Φt is an identifiable parameter and all
the non-identifiability of the model will be in ψt. Namely, fθ will be equal to:

fθ = (γ + β0) +
∑k0

i=1(si + a0
i )
∑ti
j=ti−1+1 qjφ(wTj x+ bj)

+
∑k
i=tk0+1+1 ajφ(wTi x+ bi).
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So, for a fixed t, f(Φ0
t ,ψt)

= f0 if and only if

Φ0
t =
(0, w0

1, · · · , w0
1︸ ︷︷ ︸ , · · · , w0

k0 , · · · , w0
k0︸ ︷︷ ︸, b01, · · · , b01︸ ︷︷ ︸ , · · · , b0k0 , · · · , b0k0︸ ︷︷ ︸,

t2 − t1 tk0+1 − tk0 t2 − t1 tk0+1 − tk0
0, · · · , 0︸ ︷︷ ︸ 0, · · · , 0︸ ︷︷ ︸).
k0 k − tk0+1

We get then the following expansion for the numerator of generalized derivative
functions:

Lemma 2.3 For a fixed t, in the neighborhood of the identifiable parameter Φ0
t :

f(Φt,ψt)(x)− f0(x) = (Φt − Φ0
t )
T f
′

(Φ0
t ,ψt)

(x) + o(‖f(Φt,ψt) − f0‖22),

with
(Φt − Φ0

t )
T f
′

(Φ0
t ,ψt)

(x) = γ +
∑k0

i=1 siφ(w0
i
T
x+ b0i )

+
∑k0

i=1

∑ti+1

j=ti+1 qj
(
wj − w0

i

)T
xa0

i IR+(w0
i
T
x+ b0i )

+
∑k0

i=1

∑ti+1

j=ti+1 qj
(
bj − b0i

)
a0
i IR+(w0

i
T
x+ b0i )

+
∑k
i=tk0+1+1 aiφ(wi

Tx+ bi)

where IR+ is the indicator function of R+: IR+(z) = 0 if z < 0 and IR+(z) = 1
if z ≥ 0

Now, with this reparameterization, the proposition 1 of Rynkiewicz [5] shows
that the assumption (B-2) is true for our model.

Finally, we can give the asymptotic behavior of the SSE:

Theorem 2.4 Let the map Ω : L2(P ) → L2(P ) be defined as Ω(f) = f
‖f‖2 .

Under the assumptions B-1 and B-2, a centered Gaussian process {W (d), d ∈
D} with continuous sample paths and a covariance kernel P (W (d1)W (d2)) =
P (d1d2) exists so that

lim
n→∞

n∑
t=1

(Yt − f0(Xt))
2 −

n∑
t=1

(Yt − fθ(Xt))
2

= σ2 sup
d∈D

(max {W (d); 0})2
.

The index set D is defined as D = ∪tDt, the union runs over any possible vector
of integers t = (t1, · · · , tk0+1) ∈ Nk0+1 with 0 ≤ t1 ≤ k−k0 < t2 < · · · < tk0+1 ≤
k and

Dt =
{

Ω
(
γ +

∑k0

i=0 εiφ(w0
i
T
X + b0i ) +

∑k0

i=0 IR+(w0
i
T
X + b0i )(ζ

T
i X + αi)

+
∑k
i=tk0+1+1 µiφ(wi

TX + bi)
)
,

γ, ε1, · · · , εk0 , α1, · · · , αk0 ∈ R, µtk0+1+1, · · · , µk ∈ R+; ζ1, · · · , ζk0 ∈ Rd,
(wk0+1+1, bk0+1+1), · · · , (wk, bk) ∈ Θ\

{
(w0

1, b
0
1), · · · , (w0

k0 , b
0
k0)
}}

.
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This theorem shows that the degree of over-fitting is bounded in probability,
but depends on the size of the asymptotic set D. Hence, the over-fitting that
occurs in the over-realizable case is for the extreme values of the input weights
as in an MLP with sigmoidale activation functions (see Hagiwara and Fukumizu
[2]). In order to reduce the over-fitting we need to control the size of the limit
functions in D, this can be done by reducing the size of the inputs weights
(wi, bi)1≤i≤k either by L2 penalization (weight decay method) or L1 penalization
(Lasso method). However, note that the size of the weights has to be large
enough so that Θ contains some parameters of Θ0, so we need to find a trade-off
for this penalization.

3 Conclusion

MLP models have been used for many years, but have evolved dramatically
these last years. The ReLu activation function is now one of the most popular
even if the statistical properties of models using these functions are not well
known. This paper is an attempt to fill this gap. By using modern theory which
deals with over-parameterized models we can give the asymptotic behavior of
the SSE for MLP with one hidden layer using ReLu functions. It is clear that
the networks used in practice are deeper and the layer after the hidden units is
often a pooling function like the mean, the maximum or a norm, but pooling
functions can also be seen as constraints over parameters and so over asymptotic
set D. Finally, our methodology seems to be promising to give some statistical
understanding of models involved in deep learning.
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