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Abstract. We propose a deep architecture for the classification of mul-
tivariate time series. By means of a recurrent and untrained reservoir we
generate a vectorial representation that embeds temporal relationships in
the data. To improve the memorization capability, we implement a bidi-
rectional reservoir, whose last state captures also past dependencies in the
input. We apply dimensionality reduction to the final reservoir states to
obtain compressed fixed size representations of the time series. These are
subsequently fed into a deep feedforward network trained to perform the
final classification. We test our architecture on benchmark datasets and
on a real-world use-case of blood samples classification. Results show that
our method performs better than a standard echo state network and, at
the same time, achieves results comparable to a fully-trained recurrent
network, but with a faster training.

1 Introduction

Reservoir computing (RC) is an established paradigm for modeling nonlinear
temporal sequences [I]. In machine learning tasks, echo state networks (ESNSs)
are the most common RC models, wherein the input sequence is projected to
a high-dimensional space through the use of a (fixed) nonlinear recurrent reser-
voir [I]. Learning is performed by applying simple linear techniques in the
high-dimensional reservoir space. The lack of flexibility in the recurrent part is
balanced by a range of advantages, including faster training compared to other
recurrent neural networks (RNNs). In tasks requiring a limited amount of tem-
poral memory, ESNs achieve state-of-the-art results in many real-world scenarios
constrained by time budgets, low-power hardware and limited data [2]. On the
other hand, fully-trained RNNs trade architectural and training complexity with
more accurate representations and a larger memory capability [3].

We propose an architecture for time series classification called Bidirectional
Deep-readout ESN (BDESN), which combines the training speed of RC with the
accuracy of trainable RNNs. We equip our model with a bidirectional reservoir
to curtail the short-term memory limitation in ESNs. Bidirectional architectures
have been successfully applied in RNNs to extract temporal features from the
time series that accounts also for dependencies very far in time [4]. Differently
from the classic linear readout found in ESNs, we generate the desired output
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by processing the temporal features with a deep feedforward network trained
with gradient descent. Although we loose a closed form solution, the whole
architecture can still be trained quickly, since the recurrent part is fixed and the
time consuming unfolding procedure [5] is avoided. Additionally, we can leverage
recent advancements in deep learning to speed up the learning [6]. The temporal
features generated by the bidirecitonal reservoir are projected into a subspace
before being fed into to feedforward network, to reduce model and training
complexity [7]. Deep feedforward networks on top of RNNs demonstrated to
enhance the representative power of the state space of a recurrent model [§].
However, so far their application in reservoir computing has been limited, due
to difficulties in training [I]. We note that our model differs from the recently
proposed deep ESNs [9] [10], which are built by concatenating multiple (fixed)
reservoirs, with no modification of the adaptable part. The two ideas are in fact
complementary, and can in principle be used together.

We empirically validate our model against standard ESNs and fully-trainable
RNNs on multiple benchmark datasets. We show that BDESN vastly outper-
forms an ESN, achieving a competitive accuracy with respect to RNNs, while
being orders of magnitude faster to train.

2 Methodology

The BDESN assigns to a multivariate time series (MTS) = = {x;}1_, a class label
c through a three-step procedure. First, a special recurrent reservoir generates
a representation of x that has fixed (large) size and embeds temporal features.
Then, a dimensionality reduction algorithm projects the reservoir outputs in a
lower dimensional space. Finally, a multilayer perceptron (MLP) classifies the
vectorial representation of x. In Fig. [I| we depict the whole architecture, whose

details are discussed in the following.
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Fig. 1. Schematic illustration of the BDESN architecture.

2.1 Extracting features with a reservoir

The reservoir is governed by the following state-update equation

h, = f(Whht—l + Wixt)v (1)
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where h; is the internal time-dependent state, which combines the current in-
put x; and the previous computations h;_;. The function f is a nonlinear
activation (usually a tanh), W’ is a sparse matrix that defines the recurrent
self-connections in the reservoir, and W defines input connections. Both ma-
trices are randomly generated and left untrained, and the reservoir behavior
is controlled mainly by three hyperparameters. These are the state size N, the
spectral radius p of W", and scaling of the inputs w. Through an optimal tuning
of these hyperparameters the reservoir produces rich dynamics and its internal
states can be used to solve many prediction and classification tasks [IJ.

The last state hp generated by the reservoir, after the whole input @ is pro-
cessed, is a high-level representation of fixed size that embeds the temporal de-
pendencies of x. Since the reservoir trades its internal stability with a vanishing
memory of the past inputs [11], at time T the state maintains scarce informa-
tion about the first inputs. To alleviate this issue, we feed to the same reservoir
also the MTS in reverse order, ' = {xr_;}_, and we generate a new repre-
sentation h’7 that is more influenced by the first inputs. A final representation
is obtained by concatenating the two states, hy = [hp;h’ T]T. A bidirectional
reservoir has been recently used for time series prediction [12]. However, the
architecture proposed in this work is significantly different, mainly because we
deal with classification tasks.

2.2 Dimensionality Reduction

A dimensionality reduction method maps data from high to a lower dimensional
space, usually relying on unsupervised criteria. In a classification setting super-
vised techniques can also be adopted to improve the dimensionality reduction
procedure, although we do not consider them in this paper.

Popular algorithms are principal component analysis (PCA) and kernel PCA,
which project data on the first d eigenvectors of a covariance matrix. PCA and
kPCA have been already successfully applied to ESN reservoir states, improving
its prediction and modeling capabilities [7]. In BDESN, dimensionality reduc-
tion provides a strong regularization that prevents overfitting in the classifier
operating on the reservoir states.

2.3 Multilayer Perceptron

In a standard ESN, the output layer is a linear readout that is quickly trained
by solving a convex optimization problem. However, we hypothesize that a sim-
ple linear model does not possess sufficient representational power for modeling
the high-level embeddings resulting from our reservoir space. For this reason,
in BDESN the classification is performed by a MLP with L layers on the rep-
resentations generated at the previous steps. The number of layers in the MLP
thus determines a “feedforward” depth to the RNN [§]. Deep MLPs are known
for their capability of disentangling factors of variations from high-dimensional
spaces, and can nowadays be trained efficiently with the use of sophisticated
regularization techniques. In particular, we leverage two procedures, namely
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dropout and the minimization of the Lo norm of the model parameters (i.e.,
weight decay). Thanks to the dimensionality reduction step, we can greatly re-
duce the number of parameters in the MLP, hence its variance, speed up the
computation and obtain a faster convergence during training.

3 Experiments

To evaluate the proposed architecture, we compare the classification accuracy
and the training time of BDESN with two different RNNs. The first is a standard
ESN, configured with the same reservoir (only unidirectional) of BDESN and
with linear readout trained with ridge regression. The second is a network
where the vectorial representations are generated by a recurrent layer of gated
recurrent units (GRUs), which are fed into a MLP equivalent to the one of
BDESN. Contrarily to the reservoir, the GRU layer is trained supervisedly.
Each RNN depends on different hyperparameters, which are optimized by
means of random search. The optimized RNNs are trained 10 times, using ran-
dom and independent model initializations on a Intel Core i7-6850K CPUQ4GHz.
The code is implemented in Tensorflow and is publicly available online, along
with a detailed description of the experimental setup and validation procedurdﬂ

3.1 Benchmark datasets

We perform classification of MTS from different datasets, whose details are re-
ported in Tab.

" Table 1. Time series dataset
Dataset 7V Train Test #C Tmin Thmas Source details. Column 2 to 5 report

DistPhal1 400 139 3 80 80 UCR the number of variables
ECG 2 100 100 2 39 152 UCR (#V), samples in training
Libras 2 180 180 15 45 45 UCI and test set, and number of
Ch.Traj. 3 300 2558 20 109 205 UCI classes (#C), respectively.
Wafer 6 298 896 2 104 198 UCR Trmin is the length of the
Jp.Vow. 12 270 370 9 7 29 UCIT shortest MTS in the dataset

and Tyaz the longest MTS.

Classification accuracy on the test sets and training time (in minutes) ob-
tained by each RNN are reported in Tab.

Results show that BDESN consistently performs better than ESN, by ob-
taining an increment of the accuracy up to 30 percentage points (Character
Trajectory dataset). BDESN outperforms GRU, sometimes slightly, in several
classification tasks, except in the Wafer dataset. Average GRU accuracy is
higher also in ECG, but the difference is not significant due to the high stan-
dard deviation in the results. While BDESN is slower than ESN, it can still be
trained up to 70 times faster than GRU, providing a huge impact in terms of
the required computational resources.

1 github.com/FilippoMB/Bidirectional-Deep-reservoir-Echo-State-Network
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Table 2. Classification accuracy and training time (minutes) obtained by each RNN on
different datasets in 10 independent runs. Best average accuracies are in bold.

ESN GRU BDESN
Accuracy Time Accuracy Time Accuracy Time

DistPhal | 71.5+£3.3  0.11 69.4+2.4 3433 | 73.7£091 1.15
ECG 65.6+4.63  0.03 79.1+4.3 10.35 78.5+1.5 0.22
Libras 76.2+2.77  0.03 72.7+4.8 5.27 78.4%+1.9 0.53
Ch.Traj. | 43.44+2.72 0.23 72.1+£6.4  40.28 | 77.6+5.53 0.63
Wafer 89.7+£0.9  0.06 | 98.2+0.9 35.38 90.3£0.8 0.76
Jp. Vow. | 85.842.34 0.06 | 94.45+1.88 6.03 | 94.72+1.12 0.58

Dataset

Training Loss
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£ 10-4 4 the loss is more stable
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BDESN
0 10000 20000 30000 40000 50000

Even if GRU during the training phase may reach a lower cross entropy on
the training set, in BDESN the average loss is usually lower and the training is
more stable. For example, in Fig. [2| we report the cross entropy values reached
during training on the Japanese Vowels dataset. We observe that GRU is more
unstable and converges to less accurate values than BDESN.

3.2 Classification of blood samples time series

We test our method also on a real-world dataset of blood measurements col-
lected from patients undergoing a gastrointestinal surgery at University Hospi-
tal of North Norway in 2004-2012. Each patient in the dataset is represented
by a MTS of 10 blood samples measurements extracted within 20 days after
surgery. We consider the problem of classifying patients with and without sur-
gical site infections from their blood samples. The MTS contains missing data,
corresponding to measurements not collected for a given patient in one day of
the observation period, which are replaced with mean-imputation. The dataset
consists of 883 MTS, of which 232 are relative to patients with infections.

Table 3. F1 score and time

RNN ‘ F1 score Time (mins) of the different models on the
ESN 0.734+0.041 0.01 blood samples dataset. Best
GRU 0.77940.018 10.54 average result is in bold.
BDESN | 0.761+0.054 1.87
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In Tab. |3| we report the F1 score and time obtained by the different models
on the blood samples data. Since the dataset is imbalanced, F1 score in this
case is a more suitable measure of performance than accuracy. We observe that
the performance of GRU and BDESN are comparable and both are better than
ESN. GRU mean F1 score is somehow higher and, by looking at the standard
deviation, we notice its performance to be slightly more stable. However, GRU
trades this moderate improvement with a significant increment in training time,
which is 1 and 2 orders of magnitude higher than BDESN and ESN;, respectively.

4 Conclusions

We proposed a novel recurrent architecture for time series classification, the bidi-
rectional deep-readout ESN, which captures dependencies in the data forward
and backward in time, by means of a large untrained reservoir. The representa-
tion yielded by the reservoir is firstly regularized with PCA and then classified by
a MLP trained supervisedly. Our approach trains much faster than a RNN con-
figured with GRU cells to generate the same kind of representations. We tested
our architecture on several benchmark datasets and one real-world use-case of
time series classification. Results indicate that BDESN performance is much
better than ESN and sometime even better than a fully trained GRU network.
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