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Abstract.

Manual labeling of sufficient training data for diverse application domains

is a costly, laborious task and often prohibitive. Therefore, designing mod-

els that can leverage rich labeled data in one domain and be applicable

to a different but related domain is highly desirable. In particular, do-

main adaptation or transfer learning algorithms seek to generalize a model

trained in a source domain to a new target domain. Recent years has

witnessed increasing interest in these types of models due to their practi-

cal importance in real-life applications. In this paper we provide a brief

overview of recent techniques with both shallow and deep architectures for

domain adaptation models.

1 Introduction

Often in many application domains huge volumes of unlabeled data are generated
and made available, but the cost of obtaining data labels remains high. To
overcome the burden of annotation, several attempts have been made in the
literature in order to exploit the unlabeled data or data available in different
but related domains. In particular, in this context semi-supervised learning
as well as transfer learning have gained more attention recently due to their
practical importance in many real life problems [1, 2].

The most common underlying assumption of many machine learning algo-
rithms is that both training and test data exhibit the same distribution or same
feature domains. However in many cases the data change from one domain to
another or its statistical properties evolve in time [3]. For instance, in visual ap-
plications domain shifts can simply be caused by changing conditions, location,
background, pose change among others.

The non-stationary nature of the data brings a new challenge for many exist-
ing learning algorithms, which are based on the stationary assumption. When
there is a distributional, feature space and/or dimension mismatch between the
two domains, the models learned with data in one domain would fail to predict
the test data in the other. Domain Adaptation (DA) is a particular case of
transfer learning (TL) that leverages labeled data in one or more related source
domains, to learn a classifier for unseen or unlabeled data in a target domain. In
general in DA it is assumed that the two domains share the same task i.e. class
labels are shared between domains. In addition the source domains are assumed
to be related to the target domain, but not identical.
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Domain adaptation can also be seen as a particular case of semi-supervised
learning where one aims at leveraging unlabeled data to improve the model gen-
eralization performance when limited number of labeled training data is avail-
able. Therefore if one ignores the distributional mismatch, then the traditional
semi-supervised models can be employed where data of the source and target
domain provides the labeled and unlabeled instances. Depending on the avail-
ability of the labeled instances in both domains, three scenarios can be con-
sidered, i.e. unsupervised, supervised and semi-supervised domain adaptation
[4]. Unsupervised domain adaptation approaches, do not take label information
into consideration when learning the feature representation [5]. On the other
hand, supervised domain adaptation approaches, only use labeled data from the
source and target domains. In the semi-supervised setting, one learns from la-
beled source instances as well as a small fraction of the target labeled instances
[4, 6, 7]. This paper is organized as follows. In Section 2, a brief overview of ex-
isting shallow domain adaptation methodologies is provided. Section 3, discusses
the recent domain adaptation methods with deep architectures.

2 Shallow architectures for domain adaptation

In general, two types of domain adaptation problems have been addressed in the
literature, i.e homogeneous and heterogeneous domain adaption. Let us assume
that Xs and Xt denote the source and target domain data, and the marginal
probability distribution of the source and target domains are P (Xs) and P (Xt)
respectively. In the homogeneous case, the feature representation for the source
and target domains is the same Xs = Xt but P (Xs) 6= P (Xt) (see Fig. 1 for
an illustration). However, in domain adaptation across heterogeneous feature
spaces, the distributions, feature domains or feature dimensions in source and
target domains are different. The existing methodologies in the literature for
the domain adaptation problem can be categorized into methods with shallow
and deep architectures. In what follows we give a brief overview of some of the
successful shallow domain adaptation methods.

• Instance re-weighting methods: In the sample reweighting approach,
one assigns sample-dependent weights to the training data with the aim
of minimizing the distribution discrepancy between the source and target
data points in the reweighted space [8]. The mechanisms that are mostly
used in the literature for the estimation of sample dependent weights are
formulated as the density ratio between the probability densities of the two
domains [9]. A selective Transfer Machines algorithm that jointly optimizes
the weights as well as the classifier’s parameters is also introduced in [10].
The authors in [11] proposed a method to infer re-sampling weights through
maximum entropy density estimation.

• Feature Transformation: Another key research challenge in domain
adaptation is how to learn a domain-invariant feature representation for
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Fig. 1: (a) Source dataset (b) Target dataset. Given source and target dataset,
one usually aims at learning a classifier from the source domain and adapt it to
the target domain which exhibits a different distribution than the source domain
data (i.e. P (Xs) 6= P (Xt)).

both source and target domains. The adaptation then can be accom-
plished by learning a model on the new space. Depending on the avail-
ability of the target labeled data one can consider either unsupervised or
semi-supervised feature transformation method. One of the first such DA
method is the Transfer Component Analysis (TCA) [12] that proposes
to discover common latent features having the same marginal distribu-
tion across the source and target domains, while maintaining the intrinsic
structure (local geometry of the data manifold) of the original domain by
a smoothness term.

The authors in [13] introduced a method to learn the feature transfor-
mation in order to produce a set of common transfer components across
domains. The Structural Correspondence Learning method proposed in
[13] learns a common feature space by identifying correspondence among
features from different domains. A domain adaptation approach that uses
the correlation subspace as a joint representation of the source and tar-
get data is introduced in [14]. In this approach the new representation is
learnt using unlabeled data pairs in both source and target domains. A
deep learning approach to learn new cross-domain feature representation
from the source and target data is proposed in [15]. The Heterogeneous
Feature Argumentation (HFA) [16] embeds the source and target data into
a common latent space where the transformation metrics are computed by
the minimization of the structural risk functional SVM expressed as a
function of these projection matrices.

In many domain adaptation problems, side information in the form of cor-
respondence instances (paired instances) are available for either unlabeled or
labeled instances across domains. For instance consider the snapshots of the ac-
tions of the same persons in two different time instances shown in Fig. 2. In this
case one can have access to paired labeled and unlabeled samples across domains.
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In general the instance similarity constraints between domains, if available, can
be used to enhance the performance of the classifier [6]. The authors in [17]
proposed a method that adapts representations using a small number of paired
synthetic and real views of the same object/scene. In their experiments, each
real example is paired with a corresponding synthetic image in the same pose,
and an additional unpaired synthetic images are also provided as training data.
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Fig. 2: Example of labeled and unlabeled paired instances (Image: adapted from
Mehrkanoon et al. [4]). Objects that are present in both domains are paired
instances. Among paired instances, some of them can be labeled as well.

Mehrkanoon et al. in [4] introduced a Regularized Semi-Paired Kernel Canon-
ical Correlation Analysis (RSP-KCCA) formulation for learning a new represen-
tation of the data for the sake of the domain adaptation problem. The opti-
mization problem is formulated in the primal-dual LS-SVM setting where side
information are incorporated through regularization terms. The proposed model
learns a joint representation of the data set across different domains by solving
a linear system of equations in the dual. The approach is naturally equipped
with out-of-sample extension property which plays an important role for model
selection. Different types of instances ranging from unlabeled, labeled, paired
and unpaired are seamlessly integrated to the model. Therefore the model can
be employed in unsupervised, semi-supervised as well as supervised scenarios.

3 Deep architectures for domain adaptation

Deep Learning techniques have attracted many researchers due to their success
in revolutionizing many application domains ranging from auditory to vision
signal processing [18, 19]. Deep learning based models deal with complex tasks
by learning from subtasks. In particular, several nonlinear modules are stacked in
hierarchical architectures to learn multiple levels of representation (hierarchical
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features) from the raw input data. Each module transforms the representation
at one level into a slightly more abstract representation at a higher level, i.e. the
higher-level features are defined in terms of lower-level ones.

Recent advances in artificial neural networks and in particular deep learning
have also shown promising results on domain adaptation problems [12, 20, 21].
In this context, one of the earliest deep model is the Stacked Denoising Autoen-
coders (SDAs) which aimed at adapting the sentiment classification between
reviewers of different products [21]. The marginalized stacked denoising au-
toencoders (mSDA) is proposed in [20] to learn new representations for domain
adaptation. As opposed to SDAs, mSDA does not require stochastic gradient de-
scent or other optimization algorithms to learn the parameters and that there is
a closed-form solution for obtaining the model parameters. The authors showed
that the representations learned by mSDA are as effective as the traditional
SDAs in benchmarked tasks. As suggested in [20], both domains not necessarily
should use identical features and one can pad all input vectors with zeros to
make both domains be of equal dimensionality.

Other research studies have shown that layers of deep convolutional networks
can be fine-tuned to novel tasks [22]. It has been shown that the features learned
by deep convolutional networks are more abstract and have discrimination power
in the target domain even without any adaptation [22, 23, 24]. Further attempts
have been made in the literature to exploit deep models for domain adaptation
problems and in general these models can be categorized into three groups. The
first group utilizes the CNN models to extract features which later is used by
the shallow DA methods. These methods consider the deep network as feature
extractor [25]. New representation for the input data are obtained by means of
the activations of the layers in a deep architecture. In particular, the authors
in [22] examined the features learned from a deep convolutional network trained
using a large labeled fixed set of object recognition tasks on novel generic tasks
which may differ significantly from the originally trained tasks. They demon-
strate that by leveraging an auxiliary large labeled object database to train a
deep convolutional architecture, one can learn features that have a good gen-
eralization ability to perform semantic visual discrimination tasks using simple
linear classifiers. On the other hand, one then can use these Deep Convolutional
Activation Features within shallow DA methods. For instance the authors in
[22] used Deep features in several DA methods such as Geodesic Flow Kernel
[5], Max-Margin Domain Transforms [26] and Feature Augmentation [27].

The methods in the second group try to adjust the the pre-trained network to
the new task by fine-tuning on the source domain, and use the model to predict
class labels for target instances [28, 29, 30]. However it should be noted that
fine-tuning a network might also require a relatively large amount of labeled
data which is not always available for the target domain. Therefore, in this case
the model is usually fine-tuned using the labeled source data augmented with,
if available, the few labeled target instances. When using these approaches, one
should make sure that the model does not overfit to the source data in case only
few labeled target were available.
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Among methods in third category one can mention for instance the Stacked
Denoising Autoencoders [21], the Stacked Marginalized Denoising Autoencoders
[20], Domain Adaptive Neural Network [31]. The domain adaptation method
introduced in [32] uses a few target samples to reconstruct the output of the
filters that were found affected by the domain shift. Other deep models starts
with two streams, representing the source and target domains which are then
trained with a combination of a classification and a discrepancy loss [33, 34, 35].
In these types of models the discrepancy loss aims at diminishing the shift be-
tween the two domains while the classification loss relies on the labeled source
data. The authors in [36] introduced Transfer Neural Trees to relate hetero-
geneous cross-domain data and jointly solved cross-domain feature mapping,
adaptation, and classification. A deep learning model for domain adaptation
by means of interpolating between domains is proposed in [37] where a predic-
tively useful representation of the data is learned by taking into consideration
the information from the distribution shift between the two domains.

Lifelong learning is a framework for continual adaptation to new domains.
In this scenario, new tasks are trained in sequence, and models must be adapted
such that they have good performance on the new task, while retaining high
performance on previously seen tasks without retraining. [38] have extended
theoretical works for transfer learning to show generalization bounds in the life-
long learning setting depending on the Kullback-Leibler divergence between task
distributions. Practical algorithms address the setting by assuming the marginal
distributions are equal P (Xs) = P (Xt) [39], or by keeping a low-memory approx-
imation to the previous marginal distributions by an auto-encoder [40] or a small
number of carefully chosen samples [41].

Last but not least, it should be noted that most of the research works in
the domain adaptation literature emphasis on image categorization tasks. Rel-
atively few papers discuss the domain adaptation problem in other challenging
tasks such as object detection, semantic segmentation, pose estimation, video
event or action detection. It is expected that in near future more attentions will
be given to address these challenging problems and the literature will witness
novel methodologies and architectures in the context of domain adaptation.
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