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Abstract. Emerging portable applications require always-on sensing
technologies to continuously monitor the environment and their user’s
needs. Yet, the high power consumption that results from this continuous
sensing often hampers these systems’ always-on functionality. In this pa-
per we propose a hardware-aware Machine Learning scheme that exploits
the devices’ ability to trade-off the quality of its sensors versus its power
consumption. We introduce a technique that extends Bayesian Network
classifiers with hardware description nodes that encode the probabilistic
relation between sensory features and their degraded versions. We show
how this allows to tune the hardware device’s power consumption versus
inference accuracy trade-off space with fine granularity, resulting in oper-
ating points that achieve significant power savings at almost no accuracy
loss. This is empirically shown on various Machine Learning benchmarking
datasets.

1 Introduction

Many smart sensory applications (e.g. augmented reality or natural user inter-
faces in smart watches and phones, domestic gadgets, robots, etc.) encounter
a fundamental conflict between the available battery life and the desire to un-
interruptedly gather, process and fuse a large amount of high quality sensory
information. To overcome limitations on computational bandwidth, state-of-
the-art implementations often rely on cloud computing to run the most complex
sensor fusion and inference tasks remotely [1]. Yet, this does not address the
dominance of the sensor interfaces themselves on the overall power consumption
of the device. Moreover, this approach results in a significant overhead from
the necessary data transfer on the system’s power consumption, as well as in-
creased latency and user privacy concerns [1]. Always-on mobile applications
therefore necessitate a new local compute paradigm whereby the algorithmic
level of abstraction has knowledge of the hardware’s properties and limitations.
In this paper we propose to extend Bayesian Network classifiers with nodes that
describe the hardware’s noise, thus enabling a machine-learning-based resource
consumption scalability scheme.

The remainder of this paper is organized as follows. In Section 2, we discuss
the state of the art of related research topics. Our noise scalable Bayesian
Network classifier and corresponding noise tuning algorithm are presented in
Sections 3 and 4, respectively. We experimentally evaluate the proposed methods
in Section 5 and conclude in Section 6.
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2 Related Work

Related work on enabling always-on inference in embedded sensing applications
is taking place both in the hardware and in the algorithmic research commu-
nities. From the hardware design point of view, the development of highly
power-efficient processors and sensor front-ends [2, 3], albeit relevant for the
realization of the aforementioned paradigm, is often not co-optimized with the
algorithms’ functionality. The hardware design paradigm addressed in this work,
“analog-to-information converters” [4], does open opportunities towards such co-
optimization. In this concept, information is already extracted from the incom-
ing sensory signal in the analog domain, which results in a very power-scalable
system which can be controlled from the algorithmic level. From the algorithmic
point of view, state-of-the-art approaches have focused on 1) sequentially decid-
ing what set of observations provide the most information under scarce resources
[5], 2) whether more observations are required to meet the tasks’ requirements
[6] and 3) cost-aware feature sub-set selection[7]. However, these techniques are
often not suitable for multi-sensor time series, where all incoming signals have
to be coherently sampled. In addition, they only enable a few coarse operating
points in the power versus inference performance trade-off space, as they can
only decide to observe a feature or not. In the remainder of this paper, we
will propose a methodology that addresses the aforementioned shortcomings to
realize an efficient hardware aware embedded sensing paradigm.

3 Noise Scalable Bayesian Network classifier

Sensor front-end hardware allows to scale the quality of the incoming sensory
data in exchange for power consumption savings. This can be done by con-
trolling the allowed level of degradation of the sensor front-end — typically
the result of the “circuit noise” arising in the sensor itself and the subsequent
filters and amplifiers. Under the “analog-to-information converter” hardware
design paradigm addressed in this paper, this degradation can be independently
controlled for each of the features required by the machine learning algorithm.
According to common circuit design practice [8], the power consumption of the
hardware components generating each feature (Pi) scales proportionally to the

standard deviation si they tolerate Pi =
Pref,i

22SNRi
, where Pref,i is the power con-

sumption of the feature at the lowest possible noise setting and SNRi is defined
as log(1/si). The total power consumption of the sensor front-end — calculated
by adding the power contributions of all features Ptotal =

∑
i Pi — can then be

optimally traded-off for a target classification accuracy. To exploit these power
saving opportunities and to provide a framework for the aforementioned hard-
ware vs inference performance trade-off, we propose to extend general Bayesian
Network classifiers with nodes representing various noisy versions of each fea-
ture, such that each of them can be observed at a specific noise tolerance selected
from a finite user defined set.

Figure 1(a) shows the proposed model structure of an extended Tree Aug-

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6. 
Available from http://www.i6doc.com/en/.  

148



(b)
Values of

(a)

Fig. 1: (a) Example of a noise scalable Bayesian Network classifier — a TAN
classifier is extended with noisy nodes (in blue). (b) An example of the proba-
bilistic relation between feature Fi and it’s noisy version F ′

i .

mented Naive Bayes classifier (TAN) — note that the technique can be imple-
mented with any Bayesian Network classifier. The n-feature classifier has been
extended with n additional nodes that encode the probabilistic relations between
the features and their noisy versions, denoted by Fi and F ′

i , respectively. The
noisy version of the feature is described by F ′

i = Fi +Zi ∼ N (μ, σ), where Zi is
the Gaussian circuit noise (conforming to the sensor front-end hardware prop-
erties). The mean is the value represented by μ = Fi and σ = si is the standard
deviation chosen from a user defined set of standard deviations per feature, or-
dered in increasing size smodel = {si,1, . . . , si,h} (see Figure 1(b)). The selection
of the possible standard deviations set per feature is made on the basis of the
sensor front-end’s hardware properties and the tuning capabilities it entails. The
proposed structure encodes the following joint probability distribution over the
original and noisy feature sets and the class variable C:

Pr(C,F1, .., Fn, ..., F
′
1, .., F

′
n) =

n∏

i=1

Pr(F ′
i |Fi) · Pr(F1, . . . , Fn, C) , (1)

where the distribution Pr(F1, . . . , Fn, C) is learned from the training data and
the class labels C. The model as such allows to assess the impact that varying
the amount of noise si on each of its observed features i might have on clas-
sification performance. During inference, the nodes corresponding to the noisy
feature versions (F ′

i in Figure 1) are observed, each with a specific si, while the
nodes corresponding to the noiseless feature version (Fi) remain always hidden.
Features can also be pruned, which is equivalent to observing them with an
infinite amount of noise. Given an observation {f ′

1, f
′
2, ..., f

′
n}, classification is

performed by selecting the class that maximizes the posterior probability:

Pr(C|f ′
1, f

′
2, ..., f

′
n) ∼

∑

F1

· · ·
∑

Fn

n∏

i=1

Pr(f ′
i |Fi) · Pr(F1, . . . , Fn, C) . (2)

It is worth mentioning that the last processing block of a real life sensor
front-end is an analog-to-digital (ADC) converter. To emulate this behavior,
the model described by equation 2 as well as the datasets can be uniformly
discretized, as will be described in the experimental Section.
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4 Feature quality scalability

The model described in the previous Section can be used to efficiently choose
which of the h noisy versions of each feature i to observe. The objective is to
select the set of standard deviations si that minimizes the total system power
consumption for any given target classification accuracy. This begets a classifi-
cation performance versus power consumption trade-off space with a variety of
feature-wise noise dependent operating points. Due to the computational hard-
ness that the problem of feature subset selection entails [5], we use a greedy
search heuristic to determine the Pareto optimal set of such operating points.

We initialize the search to the smallest standard deviation available for all
features sselect = {s1,1, . . . , sn,1} and will iteratively perform the following steps
until all features are observed with the largest noise setting, i.e. sselect =
{s1,h, . . . , sn,h}. At each iteration, we target to reduce the quality of each
feature individually, thus producing n quality reduction candidates and select-
ing the best one by means of a greedy neighborhood search: in each candi-
date j, the noise tolerated by feature Fj is increased one level with respect
to the current setting, hence going from sj,vj

to sj,vj+1, where vj refers to
the current value of sj . Each of the resulting candidates are described by
scand,j = {s1,v1

, . . . , sj,vj+1, . . . , sn,vn
} . To estimate the candidate accuracy

(Acc), we inject each feature in the validation set with the corresponding can-
didate Gaussian noise, and count the number of correctly predicted instances.
We then estimate the candidate power consumed across all the features (Ptotal)
by summing the individual features’ power contributions. We finally select the
candidate that minimizes a predefined cost function CF = ΔAcc

ΔPtotal
, where the

term Δ refers to the predicted state difference between time t and time t+ 1.

5 Experimental Evaluation

We evaluated the power-accuracy trade-off enabled by the proposed model for
four benchmarking datasets from the UCI Machine Learning repository that cor-
respond to multi-sensor mobile applications and that can benefit from the power
consumption scalability aimed at in this paper: 1) mobile robot navigation (Pi-
oneer), 2) human activity recognition from smartphone data (HAR), 3) human
activity recognition from body motion and vital signs recordings (MHealth) and
4) physical activity monitoring from an inertial measurement unit and a heart
rate monitor (PAMAP). As a pre-processing step, we removed all the nominal
features — because we are interested only on sensory signals — and we uni-
formly discretized the remaining numerical features into 32 bins to emulate the
role of a 5 bit ADC in the sensory stream process. We also performed feature
selection with Weka’s wrapper subset evaluator with a Bayes Net classifier and
the default parameters [9] to avoid processing redundant or irrelevant features,
a consideration regarding the resource constrains of embedded applications. For
all the experiments, we extended Naive Bayes classifiers with seven possible
noisy feature settings smodel = {0.0005, 0.001, 0.03, 0.05, 0.07, 0.09,∞} —where
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Dataset Instances Features Classes Sel. F. Pmax = 1 Pmax/10 Pmax/100
Pioneer 1 6129 27 35 17 95.7± 0.2 93.8± 2.7 89.5± 3.5
HAR 10299 561 6 37 94.8± 0.25 94.6± 1.1 89± 2.5

Mhealth 312475 23 11 21 81.8± 0.01 80.4± 0.35 75.5± 0.4
PAMAP 10000 2 39 12 11 88.3± 0.001 87.04± 0.03 81.9± 0.04

Table 1: Experimental data sets’ characteristics and the accuracy our method-
ology achieves for different power scalings.
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Fig. 2: Right: Power vs accuracy trade-off on all datasets. Left: two operating
points from the Pioneer dataset’s Pareto optimal front

∞ corresponds to pruning the feature— that were normalized to each feature’s
dynamic range. We normalized the power consumption estimation from 0 to 1,
where Pmax = 1 represents the setting where all features are extracted with their
lowest possible noise (si = 0.0005). This facilitates the performance comparison
among benchmarks, given that the dataset generating hardware is unknown.
We performed a 10-trial, 5-fold cross validation of the greedy search detailed in
Section 3 to asses the applications’ power consumption vs accuracy trade-off, as
reflected by the Pareto curves of Figure 2. All datasets demonstrate power saving
opportunities of at least an order of magnitude whilst preventing accuracy from
degrading more than 2%. Further power savings can be traded off when accuracy
requirements are relaxed. For example, consider the Pioneer data set (Figure 2)
whose features were extracted from a variety of sensors among which are sonars
(LS,RS), wheel odometers (LW,RW) and a multi-channel camera (CAM). Ac-
curacy degradation can be avoided for power consumption savings of more than
3× (top-left) but savings of up to 3 orders of magnitude (bottom-left) can be
achieved if the accuracy requirements decrease from 95% to 83%.

The last three columns of Table 1 show the accuracy attained by the selection
strategy at different power scaling levels of the sensor system for all the datasets.
Accuracy degradation rates depend on the data sets’ properties: number of in-

1From movement experiences only
2Reduced data set size used for experiments
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stances, classes and features; number and position of the discretization intervals;
and the class conditional probability distribution of each feature. Overall, all the
data sets benefit from the noise tuning algorithm: in all our experiments, they
lose less than 10% accuracy while achieving sensor power savings of at least two
orders of magnitude. This also proves that the methodology can be effectively
implemented with a wide variety of applications as it allows to select the optimal
settings according to the dataset and the classification task.

6 Conclusion and future work

In this paper we proposed to extend Bayesian Network classifiers with parametriz-
able hardware description nodes that encode the probabilistic relation between
sensory features and their degraded versions. We demonstrated that this model
allows to exploit the power saving opportunities of feature tunable sensing sys-
tems by allowing to optimally tune the noise across sensory features. We dis-
cussed the performance of the proposed methodology through the analysis of
the achievable trade-off between power consumption and inference accuracy, and
we demonstrated the general applicability on four standard Machine Learning
datasets relevant to embedded sensing applications. Since this scheme allows to
scale the hardware power consumption from the algorithmic level of abstraction,
it can form the basis for a number of run-time strategies that can be implemented
in embedded devices to ensure their always-on functionality.
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