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Abstract. Combining Generative Adversarial Networks (GANs) with
encoders that learn to encode data points has shown promising results
in learning data representations in an unsupervised way. We propose a
framework that combines an encoder and a generator to learn disentan-
gled representations which encode meaningful information about the data
distribution without the need for any labels. While current approaches
focus mostly on the generative aspects of GANs, our framework can be
used to perform inference on both real and generated data points. Ex-
periments on several data sets show that the encoder learns interpretable,
disentangled representations which encode descriptive properties and can
be used to sample images that exhibit specific characteristics.

1 Introduction

Learning meaningful representations of data is an important step for models to
understand the world [1]. Recently, the Generative Adversarial Network (GAN)
[2] has been proposed as a method that can learn characteristics of data distri-
butions without the need for labels. GANs traditionally consist of a generator
G, which generates data from randomly sampled vectors Z, and a discriminator
D, which tries to distinguish generated data from real data x. During training,
the generator learns to generate realistic data samples G(Z), while the discrimi-
nator becomes better at distinguishing between the generated and the real data
x. As a result, both the generator and the discriminator learn characteristics
about the underlying data distribution without the need for any labels [3]. One
desirable characteristic of learned representations is disentanglement [1], which
means that different parts of the representation encode different factors of the
data-generating distribution. This makes representations more interpretable,
easier to modify, and is a useful property for many tasks such as classification,
clustering, or image captioning.

To achieve this, Chen et al. [4] introduced a GAN variant in which the
generator’s input is split into two parts z and c. Here, z encodes unstructured
noise while c encodes meaningful, data-generating factors. Through enforcing
high mutual information between c and and the generated images G(z, c) the
generator is trained using the inputs c as meaningful encodings for certain im-
age characteristics. For example, a ten-dimensional categorical code for c could
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represent the ten different digit classes in the MNIST data set. Since no labels
are provided the generator has to learn by itself which image characteristics can
be represented through c. One drawback of this model is that the only way
to perform inference, i.e. map real data samples into a (disentangled) represen-
tation, is to use the discriminator. However, there is no guarantee that the
discriminator learns good representations of the data in general, as it is trained
to discriminate between real and generated data and may therefore focus only
on features that are helpful for discriminating these two, but are not necessarily
descriptive of the data distribution in general [5]. Zhang et al. [6] tried to en-
force disentangled representations in order to improve the controllability of the
generator. The latent representation is split up into two parts encoding mean-
ingful information and unknown factors of variation. Two additional inference
networks are introduced to enforce the disentanglement between the two parts
of the latent representation. While this setup yields a better controllability over
the generative process it depends on labeled samples for its training objective
and can not discover unknown data-generating factors, but only encodes known
factors of variation (obtained through labels) in its disentangled representation.

Donahue et al. [5] and Dumoulin et al. [7] introduced an extension which
includes an encoder E that learns the encodings of real data samples. The
discriminator gets as input both the data sample x (either real or generated)
and the according representation (either Z or E(x)) and has to classify them as
either coming from the generator or the encoder. The generator and the encoder
try to fool the discriminator into misclassifying the samples. As a result, the
encoder E learns to approximate the inverse of the generator G and can be used
to map real data samples into representations for other applications. However,
in these approaches the representations follow a simple prior, e.g. a Gaussian or
uniform distribution, and do not exhibit any disentangled properties.

Our model, the Bidirectional-InfoGAN, integrates some of these approaches
by extending traditional GANs with an encoder that learns disentangled rep-
resentations in an unsupervised setting. After training, the encoder can map
data points to meaningful, disentangled representations which can potentially
be used for different tasks such as classification, clustering, or image captioning.
Compared to the InfoGAN [4] we introduce an encoder to mitigate the problems
of using a discriminator for both the adversarial loss and the inference task. Un-
like the Structured GAN [6] our training procedure is completely unsupervised,
can detect unknown data-generating factors, and only introduces one additional
inference network (the encoder). In contrast to the Bidirectional GAN [5, 7] we
replace the simple prior on the latent representation with a distribution that is
amenable to disentangled representations and introduce an additional loss for
the encoder and the generator to achieve disentangled representations. On the
MNIST, CelebA [8], and SVHN [9] data sets we show that the encoder does
learn interpretable representations which encode meaningful properties of the
data distribution. Using these we can sample images that exhibit certain char-
acteristics, e.g. digit identity and specific stroke widths for the MNIST data set,
or different hair colors and clothing accessories in the CelebA data set.
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Fig. 1: High-level overview of the Bidirectional-InfoGAN. The generator G gen-
erates images from the vector (z, c) and tries to fool the discriminator into clas-
sifying them as real. The encoder E encodes images into a representation and
tries to fool the discriminator D into misclassifying them as fake if its input is a
real image while trying to approximate P (c|x) if its input is a generated image.

2 Methodology

Our model, shown in Fig. 1, consists of a generator G, a discriminator D, and an
encoder E, which are implemented as neural networks. The input vector Z that
is given to the generator G is made up of two parts Z = (z, c). Here, z is sampled
from a uniform distribution, z ∼ U(−1, 1), and is used to represent unstructured
noise in the images. On the other hand, c is the part of the representation that
encodes meaningful information in a disentangled manner and is made up of
both categorical values ccat and continuous values ccont. G takes Z as input and
transforms it into an image x, i.e. G : Z → x.

E is a convolutional network that gets as input either real or fake images
and encodes them into a latent representation E : x → Z. D gets as input an
image x and the corresponding representation Z concatenated along the channel
axis. It then tries to classify the pair as coming either from the generator G
or the encoder E, i.e. D : Z × x → {0, 1}, while both G and E try to fool
the discriminator into misclassifying its input. As a result the original GAN
minimax game [2] is extended and becomes:

min
G,E

max
D

V (D,G,E) = Ex∼Pdata
[logD(x,E(x))] + EZ∼PZ

[log(1−D(G(Z), Z))],

where V (D,G,E) is the adversarial cost as depicted in Fig. 1.
In order to force the generator to use the information provided in c we max-

imize the mutual information I between c and G(z, c). Maximizing the mu-
tual information directly is hard, as it requires the posterior P (c|x) and we
therefore follow the approach by Chen et al. [4] and define an auxiliary dis-
tribution E(c|x) to approximate P (c|x). We then maximize the lower bound
LI(G,E) = Ec∼P (c),z∼P (z),x∼G(z,c)[log E(c|x)] + H(c) ≤ I(c;G(z, c)), where
LI(G,E) is the mutual information depicted in Fig. 1. For simplicity reasons
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Fig. 2: Images sampled from the MNIST test set. (a) Each row represents
one value of the ten-dimensional code c1, which encodes different digits despite
never seeing labels during the training process. (b) Images with maximum and
minimum values for c2 and c3 for each categorical value from c1.

we fix the distribution over c and, therefore, the entropy term H(c) is treated as
a constant. In our case E is the encoder network which gets images generated
by G as input and is trained to approximate the unknown posterior P (c|x). For
categorical ccat we use the softmax nonlinearity to represent E(ccat|x) while we
treat the posterior E(ccont|x) of continuous ccont as a factored Gaussian. Given
this structure, the minimax game for the Bidirectional-InfoGAN (BInfoGAN) is
then

min
G,E

max
D

VBInfoGAN(D,G,E) = V (D,G,E)− λLI(G,E)

where λ determines the strength of the impact of the mutual information crite-
rion LI and is set to 1.0 in all our experiments.

3 Experiments

We perform experiments on the MNIST, the CelebA [8], and the SVHN [9] data
set. While the final performance of the model is likely influenced by choosing the
“optimal” characteristics for c this is usually not possible, since we do not know
all data-generating factors beforehand. When choosing the characteristics and
dimensionality of the disentangled vector c we therefore mostly stick with the val-
ues previously chosen by Chen et al. [4]. For further information on the network
architectures and more examples of the learned characteristics on the different
data sets see our Git: https://github.com/tohinz/Bidirectional-InfoGAN.

On the MNIST data set we model the latent code c with one categorical
variable c1 ∼ Cat(K = 10, p = 0.1) and two continuous variables c2, c3 ∼
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Fig. 3: Images sampled from the (a) CelebA and (b) SVHN test sets. Each row
shows images sampled according to one specific categorical variable ccat which
represents a learned characteristic.

U(−1, 1). During the optimization process and without the use of any labels
the encoder learns to use c1 to encode different digit classes, while c2 and c3
encode stroke width and digit rotation. Fig. 2a shows images randomly sampled
from the test set according to the ten different categorical values. We can see
that the encoder has learned to reliably assign a different categorical value for
different digits. Indeed, by manually matching the different categories in c1 to
a digit type, we achieve a test set accuracy of 96.61% (±0.32%, averaged over
10 independent runs) without ever using labels during the training, compared
to Chen et al. [4] (unsupervised) with an accuracy of 95%, and Zhang et al.
[6] (semi-supervised, 20 labels) with an accuracy of 96%. Fig. 2b shows images
sampled from the test set for different values of c2 and c3. We see that we can use
the encodings from E to now sample for digits with certain characteristics such
as stroke width and rotation, even though this information was not explicitly
provided during training.

On the CelebA data set the latent code is modeled with four categorical codes
c1, c2, c3, c4 ∼ Cat(K = 10, p = 0.1) and four continuous variables c5, c6, c7, c8 ∼
U(−1, 1). Again, the encoder learns to associate certain image characteristics
with specific codes in c. This includes characteristics such as the presence of
glasses, hair color, and background color and is visualized in Fig. 3a.

On the SVHN data set we use the same network architecture and latent
code representations as for the CelebA data set. Again, the encoder learns in-
terpretable, disentangled representations encoding characteristics such as image
background, contrast and digit type. See Fig. 3b for examples sampled from the
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SVHN test set. These results indicate that the Bidirectional-InfoGAN is indeed
capable of mapping data points into disentangled representations that encode
meaningful characteristics in a completely unsupervised manner.

4 Conclusion

We showed that an encoder coupled with a generator in a Generative Adversarial
Network can learn disentangled representations of the data without the need for
any explicit labels. Using the encoder network we maximize the mutual infor-
mation between certain parts of the generator’s input and the images that are
generated from it. Through this the generator learns to associate certain image
characteristics with specific parts of its input. Additionally, the adversarial cost
from the discriminator forces both the generator to generate realistic looking
images and the encoder to approximate the inverse of the generator, leading to
disentangled representations that can be used for inference.

The learned characteristics are often meaningful and humanly interpretable,
and can potentially help with other tasks such as classification and clustering.
Additionally, our method can be used as a pre-training step on unlabeled data
sets, where it can lead to better representations for the final task. However,
currently we have no influence over which characteristics are learned in the
unsupervised setting which means that the model can also learn characteristics or
features that are meaningless or not interpretable by humans. In the future, this
can be mitigated by combining our approach with semi-supervised approaches,
in which we can supply a limited amount of labels for the characteristics we
are interested in to exert more control over which data-generating factors are
learned while still being able to discover “new” generating factors which do not
have to be known or specified beforehand.
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