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Abstract. Automatic classification of biomedical imaging became an
important field of research within the scientific community, in the latest
years. Indeed, advances in image acquisition and processing techniques,
along with the success of novel deep learning methods and architectures,
represented a considerable support in providing better biomarkers for the
characterization of several diseases, and brain diseases in particular. In this
work we propose a novel neural network approach that is applied to graphs
generated from MRI data in order to make predictions about the clinical
status of a patient. Results show high performances in classification tasks
and open interesting perspectives in the field.

1 Introduction

Analyzing and processing Magnetic Resonance Imaging (MRI) data is a very im-
portant task in biomedical imaging: pathological mechanisms in different brain
diseases still remain unknown, and hence the investigation of their temporal
progression by means of noninvasive techniques, such as neuroimaging, is crucial
for a better understanding, and then prediction, of disease evolutions, as well as
for a proper management of therapeutic treatments [13, 15]. In the last decade,
new approaches have been proposed to study and quantify damages in the brain
white matter (WM) network; the most successful, so far, is based on the analysis
of WM network by means of tools and techniques from the graph theory [10].
WM networks consist of nodes, corresponding to segmented cortical regions, and
links, reconstructed by tractography from White Matter (WM) fibers-tracts.

Complex network analysis allows to describe highly-structured data simply
via geometric representations [12]; similar models have already been used for
studying social behaviors, and recently opened new perspectives in neuroscience
for the study of functional and structural brain connectivity using graph-derived
metrics. This new approach paved the way to the characterization of either cog-
nitive impairments or pathological alterations caused by different brain diseases,
including Multiple Sclerosis (MS).
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In the last decade, neural networks (NN) have been proven capable of extract-
ing highly meaningful statistical patterns in large-scale and high-dimensional
datasets, showing great power and flexibility by learning to represent data as
a nested hierarchy of concepts. In this exciting scenario, peculiar type of ar-
chitectures achieved outstanding results in many different applications [7]. In
particular, in the past few years, a significant number of research works have
been devoted to encode the graph structure directly using a neural network
model [5, 8, 11]. These kind of techniques showed promising results in capturing
temporal information and properly managing structured data.

In this work we propose a method for the classification of Multiple Sclero-
sis (MS) patients into four clinical profiles ([Clinical Isolated Syndrome (CIS),
Relapsing Remitting (RR), Secondary Progressive (SP), Primary Progressive
(PP)]) by using structural connectivity information related to WM networks.
The main goal is to take advantage from structural brain connectivity and Neu-
ral Networks for a better characterization and classification of four MS clinical
profiles. To the best of our knowledge this is the first attempt to classify MS
patients by considering together the four classes.

The rest of the paper is structured as follows. In Section 2 we provide a
detailed description of our approach; we then present experimental classification
results in Section 3 and discuss them in Section 4. Eventually, we draw our
conclusions in Section 5.

2 Neural Networks for the Classification of MS Patients

The approach herein proposed exploits structural representations of MR images
which are extracted and used to train a NN to classify MS patients. In the
following, we provide a detailed description of the method.

2.1 Brain Structural Connectivity Graph

The connectivity graph of each subject is obtained by applying the method
originally proposed in Kocevar et al. [6] and Stamile et al. [14]. For completeness,
we briefly recall the mentioned approach.

In a first phase, FreeSurfer [1] is used to obtain cortical and sub-cortical par-
cellations from T1-weighted MR images. Then, using the resulting segmentation,
the graph nodes are defined, and a label corresponding on the five tissue-type
(cortical grey matter (GM), sub-cortical GM, WM, cerebrospinal fluid (CSF)
and abnormal appearing tissue) was assigned to each voxel. Each image is then
pre-processed using correction of Eddy-current distortions [3] and skull stripping.
MRtrix spherical deconvolution algorithm [16] is applied to compute main diffu-
sion directions per each voxel. Spherical harmonic (order of Lmax = 4) is used
to estimate both orientation distribution function (ODF) and response function.
Probabilistic streamline tractography algorithm [16] is applied to generate fiber-
tracks in voxels labeled as WM voxels. The combination of GM segmentation
and WM tractography produces, for each subject, a symmetrical connectivity
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Fig. 1: Illustration of different graph creation steps: (A) T1 and diffusion
weighted MR images are used to generate cortical parcellation and fiber trac-
tography (B), which are combined to generate connectivity matrix (C). Finally,
a threshold τ is applied to the connectivity matrices to generate adjacency ma-
trices (D)

matrix A ∈ N
q×q
+ . A representation of graph construction workflow is reported

in Figure 1.
Let Ψ : N2

1 → N indicating number of fibers connecting two nodes. Then,
each element of A is defined as ai,j = Ψ(i, j). In particular, the connectivity
matrix A represents the weighted undirected graphG = (V,E, ω) where V (|V | =
q) is the set containing the segmented GM brain regions, E is the graph edges
set defined as:

E = {{i, j} | Ψ(i, j) > 0 ∀ 1 ≤ i, j ≤ q}
Finally, the graph binarization function Υ : G → G

′
is applied to the

weighted undirected graph G = (V,E, ω) to generate an unweighted undirected
graphG

′
= (V

′
, E

′
). More in detail, the graph binarization function Υ : G → G

′

performs the following mapping:

V
′
= V E

′
= L(1, . . . , T ), T =

(q2 − q)τ

2

where L is the list of graph edges (E) sorted in ascending order of weight.
In other words, the function Υ creates, starting from a weighted graph, an
unweighted graph containing only the T strongest connections of G with respect
to a given threshold τ ∈ R[0,1].

2.2 Graph-Based Neural Networks

In this work, we take advantages from one of the architectures originally proposed
by Manessi et al. [8] in order to deal with graph-focused applications. In this
context, indeed, the goal is to learn a function f which maps each graph to
integers values. This task can usually be accomplished by using a supervised
classification approach on the graph structures [8]. The model we used for
the classification task is composed by stacking together two layers, namely the
Vertex Sequential Fully Connected (vs-FC) layer and the Graph Sequential Fully
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Connected (gs-FC) layer: it takes as input a graph and the corresponding vertex
features, and performs a supervised classification of the graph in four MS clinical
profiles. In order to provide a description of each unit, we will denote by [Y]i,j

the i-th row, j-th column element of the matrix Y, and by Y
′
the transpose of

Y; also, we denote by softmax and ReLU the soft-maximum and the rectified
linear unit functions (see [2]). G = (V, E) is an undirected graph, where V is the
set of vertex and E is the set of edges and, for each vertex vk ∈ V, xk ∈ Rd is
the associated feature vector.

Vertex Sequential Fully Connected. Consider Z ∈ RL×N . The Vertex Sequen-
tial Fully Connected layer (vs-FC layer) with c output nodes is given by the
function vs-FCc parametrized by the weight matrix W ∈ RN×c and the bias
matrix B ∈ RL×c:

gs-FCc : Z → softmax(WZ+B)

with (softmax(WZ + B)) ∈ RL×c. The vs-FC layer is actually a Fully Con-
nected layer [2] with softmax activation. The vs-FC layer outputs L c-class
probability vectors.

Graph Sequential Fully Connected. Consider Z ∈ RL×N . TheGraph Sequential
Fully Connected layer (gs-FC layer) with k output nodes is given by the function
gs-FCk parametrized by the weight matrices W1 ∈ RN×k, W2 ∈ R1×L and the
bias matrices B1 ∈ RL×kand B2 ∈ R1×k:

vs-FCk : Z → softmax(W2ReLU(W1Z+B1) +B2)

with (softmax(W2ReLU(W1Zi + B1) + B2)) ∈ R1×k. The gs-FC layer acts
as two FC layers with softmax-ReLU activation. This layer outputs one k-class
probability vector.

It is worth noting that the architectures proposed in Manessi et al. are here
extended in order to deal with several time steps; in this work, only one time
step was used for the classification task. Furthermore, we perform a featureless
approach, so that the input of the model is the adjacency matrix A ∈ R|V|×|V|.

3 Results

We carried out our experiment on a dataset consisting of 90 MS patients, dis-
tributed into the four classes as 12 CIS, 30 RR, 28 SP, 20 PP, respectively.
Multiple examination at different time points were collected per each subject.
However, we considered each of the time steps as a single data point, such that
the dataset is actually composed by 578 samples (63 CIS, 199 RR, 190 SP, 126
PP). T1 and diffusion tensor imaging (DTI) were used to obtain structural con-
nectivity matrices for each subject. 80% and 20% of the dataset was used as
training and test set respectively. The NN has 84 × 84 input nodes, followed
by a vs-FC and a gs-FC layer of 50 nodes each. Dropout (factor 0.6) between
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Precision (±stdev) Recall (±stdev) F-Measure (±stdev)
CIS 0.64 (±0.17) 0.82 (±0.19) 0.71 (±0.16)
PP 0.71 (±0.16) 0.79 (±0.12) 0.74 (±0.11)
RR 0.82 (±0.09) 0.80 (±0.10) 0.80 (±0.07)
SP 0.87 (±0.12) 0.81 (±0.10) 0.84 (±0.09)
Tot 0.82 (±0.07) 0.79 (±0.07) 0.80 (±0.07)

Table 1: Average Precision, Recall and F-Measure (± standard deviation)
achieved during cross validation (10 folds). Results are computed per class
(CIS-PP-RR-SP) and with respect to all the classes (Tot)

vs-FC and gs-FC was used and l2 regularization with a factor of 0.01 to reduce
overfitting. The parameter τ was set to 0.15 after a grid search over different
threshold values (from τ = 0.05 to τ = 1 with 0.05 steps). Adamax [4] optimizer
was used for training with learning rate 0.002 over 100 epochs. Because of the
limited size of the dataset due to the high costs required to perform screenings,
cross validation with 10 folds was used to provide a more robust evaluation of
the model. Quality of the classification was evaluated by means of Precision,
Recall and F-Measure [9].

4 Discussion

Results of our experiments are reported in Table 1: our model shows high levels
of accuracy on the selected task. Indeed, the experiments show that the herein
proposed model allows to classify MS patients with an average F-Measure of
80% on the test set, which is a promising result based on the 70.6% reached by
[6] working on three classes only, even if not directly comparable. Furthermore,
these results were achieved after about 100 epochs with a limited amount of data,
showing that NNs combined with structural representation of brain networks
offers new opportunities to identify potential biomarkers for the characterization
of global as well as local effects of pathological mechanisms on brain networks.

Nevertheless, it is worth noting that it can be observed how the level of
accuracy significantly decreases when classifying CIS patients, where the overall
F-Measure is also lower with respect to the other classes. It is reasonable to
think that the main reason relies in the small amount of cases in the dataset
used for the training; indeed, it might not be sufficiently representative of this
class (which is the minority one among the four). Hence, we can conclude that
the misclassification might be solved by training the network on a larger dataset.

5 Conclusion

In this work we proposed a graph-based method for the classification of multiple
sclerosis patients according to their clinical forms. We make use of proper tech-
niques from graph theory to describe brain network topology, and then employ
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Graph-based NNs to classify each subject. Experimental results show the capa-
bility of NNs of capturing information useful for the classification of MS patients
directly from graph structures, achieving promising results. As future work, we
aim at improving results by using the whole trail of longitudinal data, collected
from each patient, as input for the model, also trying to take advantage from
different novel models proposed in literature.
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