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Abstract. The underlying paradigm of big data-driven machine learning
reflects the desire of deriving better conclusions from simply analyzing
more data, without the necessity of looking at theory and models. Is
having simply more data always helpful? In 1936, The Literary Digest
collected 2.3M filled in questionnaires to predict the outcome of that year’s
US presidential election. The outcome of this big data prediction proved
to be entirely wrong, whereas George Gallup only needed 3K handpicked
people to make an accurate prediction. Generally, biases occur in machine
learning whenever the distributions of training set and test set are different.
In this work, we provide a review of different sorts of biases in (big) data
sets in machine learning. We provide definitions and discussions of the
most commonly appearing biases in machine learning: class imbalance
and covariate shift. We also show how these biases can be quantified and
corrected. This work is an introductory text for both researchers and
practitioners to become more aware of this topic and thus to derive more
reliable models for their learning problems.

1 Introduction

For about the last decade, the Big Data paradigm that has dominated research
in machine learning can be summarized as follows: “It’s not who has the best
algorithm that wins. It’s who has the most data.” [I] In practice, however, most
data sets are (systematically) biased.

Example 1. A spam filter is trained on a data set that consists of positive
and negative examples. However, that training set was created a few years ago.
Recent spam emails are different in two ways: the content of spam emails is
different and the proportion of spam among all emails sent out has changed. As
an outcome, the spam filter does not detect spam reliably and becomes even less
reliable over time.

The appearance of biases in data sets imply a number of severe consequences
including, but not limited to, the following: First, conclusions derived from
biased - and therefore unrepresentative - data sets could simply be wrong due
to lack of reproducibility and lack of generalizability. This is a common issue
in research as a whole, as it has been argued that most research published may
actually be wrong [2]. Second, these machine learning models may discriminate
against subjects of under-represented categories [3], 4].
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From a technical perspective, the most commonly appearing biases include
class imbalance and covariate shift. Class imbalance is the case where classes
are unequally represented in the data. An example is visualized in Fig. Co-
variate shift is the problem of drawing training and test data sets from different
distributions. An example is visualized in Fig. These biases are often ignored
in both research and practical applications. In part of the statistical literature,
the phenomenon of biased data sets is called non-stationarity. In essence, this
term indicates different statistics at a different time of collection of the training
and test data sets, respectively [5].
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(a) Class imbalance: Classes are unequally (b) Covariate shift: Training and test data
represented in the data. sets are drawn from different distributions.

Fig. 1: The most commonly appearing biases in data sets.

More generally, however, the term bias is multifaceted in the field of ma-
chine learning and describes different matters: The inductive bias of a learning
algorithm refers to the set of assumptions a learner makes [6]. For example,
logistic regression assumes that the training data is linearly separable. In con-
trast, the term bias is often used as a synonym for underfitting in the literature
[7]. Moreover, the parameter wg of a hypothesis

h(z) = wo + wiz1 + ... + wpy

is sometimes called bias as it allows to shift a hypothesis by a fixed offset [7].
Our core contribution in this work is that we provide a systematic review
of the research on biased data sets in the field of machine learning. We show
that Big Data is useful, but not a silver bullet that could simply always be used
without correcting the biases in it. The results of this review allow researchers
to pay attention to this topic in their own research and thus leading to more
reliable models. The rest of this paper is organized as follows: Section [2]| pro-
vides a selection of popularized issues caused by applications of machine learning
models trained on biased data sets. Section |[3| provides a general introduction of
how biases in data sets are defined. Sections [4] and [| provide reviews of class
imbalance and covariate shift - the most commonly appearing biases in data sets,
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respectively. Section [6] provides references to other biases in data sets studied in
the literature. Section [l summarizes this work.

2 The more data, the better?

Historically, biased data sets have been a long-standing issue in statistics. The
following example describes the failed prediction of the outcome of the 1936
US presidential election. It is often cited in the statistics literature in order to
illustrate the impact of biases in data. This example is discussed in detail in [§].

Example 2. The Democratic candidate Franklin D. Roosevelt was elected Pres-
ident in 1932 and ran for a second term in 1936. Roosevelt’s Republican op-
ponent was Kansas Governor Alfred Landon. The Literary Digest, a general
interest weekly magazine, had correctly predicted the outcomes of the elections
in 1916, 1920, 1924, 1928 and 1932 based on straw polls. In 1936, The Liter-
ary Digest sent out 10M questionnaires in order to predict the outcome of the
presidential election. The Literary Digest received 2.3M returns and predicted
Landon to win by a landslide. However, the predicted result proved to be wrong,
as quite the opposite happened: Roosevelt won by a landslide. This leads to the
following questions:

1. How could the prediction turn out to be completely wrong despite the
2.3M participants?

2. How could The Literary Digest actually collect 10M addresses in 19367

The Literary Digest compiled their data set of 10M recipients mainly from car
registrations and phone directories. In that time, the households that had a car
or a phone represented a disproportionally rich, and thus biased, sample of the
overall population that particularly favored the Republican candidate Landon.
In contrast, George Gallup only interviewed 3K handpicked people, which were
an unbiased sample of the population. As a consequence, Gallup could predict
the outcome of the election very accurately [9].

Even though this historic example is well understood in statistics nowadays,
similar or related issues happen every day dozens of times in modern Big Data-
oriented machine learning. We now discuss selected examples that result from
biases in modern applications of Big Data-driven machine learning.

Example 3. It has been argued that most data on humans may be on white
people and thus may not represent the overall population [I0]. As a consequence,
the predictions of models trained on such biased data may cause infamous news.
For example, in 2015, Google added an auto-tagging feature to its Photos app.
This new feature automatically assigned tags to photos, such as bicycle, dog,
etc. However, some black users reported that they were tagged as “gorillas”,
which led to major criticism of Google [3]. Most likely, this mishap was caused
by a biased training set, in which black people were largely underrepresented.
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The examples provided in this Section show that having simply more data
is not always helpful in training reliable models, as the data sets used may be
biased. In the following Sections, we discuss the most commonly appearing
biases in data sets. We also present different strategies for assessing biased
models and how to correct biases. These techniques include weighting training
examples as well as subsampling methods. As a consequence, having data that
is more representative is favorable, even if the amount of data used is less than
just using the examples from a strongly biased data set.

3 Biases in data sets

In supervised learning, training examples (¥, y(?) are drawn from a training
distribution Py.qin(X,Y), where X denotes the data and Y the label, respec-
tively. The training set is biased if the following inequality holds true:

Ptrain(Xa Y) 7é Ptest(Xa Y) (1)

Different biases are visualized in Fig. [I} In order to reduce a bias, it has been
shown that example (z(7),y(*)) can be weighted during training as follows [T1]:
Prost (2@, y®
wy = Leestl@LY ) 2)
Ptrain(x(l)u y(l))

However, computing Ptmm(a?(i), y(i)) may be impractical in many cases be-
cause of the limited amount of data in the training domain. In the follow-
ing sections, we discuss different biases for which specific assumptions about
Pirain(X,Y) and Piest(X,Y) are made.

4 Class imbalance

Class imbalance refers to the case where classes are unequally represented in the
data. When comparing training set and test set, respectively, we assume [12]:

Ptrain (Y) 7é Ptest (Y)a (3)
Ptrain (X|Y) = Ptest(X|Y)- (4)

An example is depicted in Fig. Imbalanced classes appear frequently
in machine learning. Machine learning models trained on imbalanced data sets
often tend to predict the majority class. The appearance of imbalanced classes
also affects the choice of evaluation metric. Accuracy and recall are the most
commonly used metric in contemporary research works in machine learning [11]
13]. However, both metrics are affected by class imbalance. As a consequence,
in many machine learning works, overly high accuracies or recalls are reported
[14].

Example 4. Anomaly detection problems often work on particularly imbal-
anced data sets. A test set containing 1K customers of which 999 have regular
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behavior and 1 has irregular behavior, (1) a classifier always predicting regular
behavior has an accuracy of 99.9%, whereas in contrast, (2) a classifier always
predicting irregular behavior has a recall of 100%. While the classifier of the
first example has a very high accuracy and intuitively seems to perform very
well, it will never predict any irregular behavior. In contrast, the classifier of
the second example will find all customers that have irregular behavior, but may
potentially trigger many costly and unnecessary interventions for customers that
have a regular behavior [14].

Example 5. The Modified National Institute of Standards and Technology
(MNIST) database consists of 60K training images and 10K test images used
for recognition of hand-written digits [I5], for which examples are depicted in
Fig. MNIST has been used in the fields of computer vision and machine
learning for the last 20 years. The test accuracies reported in recent research are
above 99.6% [16], I7]. The distribution of test labels is depicted in Fig. We
notice that this data set is mainly imbalanced between the different classes. As
a consequence, the accuracy is not the right metric for MNIST, as an increase of
this metric does not necessarily imply an increased predictive power of a model.
We would like to add that the distribution of labels is nearly the same for the
training set. Furthermore, there is another imbalance between the training set
and test set, respectively. However, that imbalance is less noticeable and we
have therefore focused on the imbalance between the labels in each set.

Test set
i
0123(:4';256789

(a) Example images. (b) Distribution of test labels.

o

No. of examples

Fig. 2: MNIST data set.

A number of metrics that are insensitive to class imbalance can be found in
the literature. One common metric is to use a receiver operating characteristic
(ROCQ) curve, which plots the true positive rate against the false positive rate for
varying decision threshold values. An example is depicted in Figure[3] The area
under the curve (AUC) is a performance measure between 0 and 1, where any
binary classifier with an AUC > 0.5 performs better than random guessing [I§].
Another metric that is insensitive to class imbalance is the Matthews correlation
coefficient (MCC):

TP xTN — FP x FN
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)’

()

which measures the accuracy of binary classifiers taking into account the imbal-
ance of both classes, ranging from —1 to +1 [19]. Furthermore, for multi-class
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Fig. 3: Example of receiver operating characteristic (ROC) curve.

problems the intraclass correlation coefficient (ICC) has been proposed [20]. It
can be interpreted as the fraction of the total variance that is between the differ-
ent classes. It has been successfully applied to imbalanced multi-class learning
problems [21].

In order to correct the class imbalance during training, a number of meth-
ods are proposed in the literature. First, weighting examples by the inverse
proportion of examples per class using Eq. [2] is proposed in the literature [12].
On the one hand, one intuitive method is undersampling the majority classes by
dropping training examples, either randomly or by specific criteria [22] 23]. This
approach leads to smaller data sets, but may lack variation, as important exam-
ples could have been dropped. On the other hand, oversampling the minority
classes by creating more training examples is proposed in the literature. Most
trivially, training examples can simply be randomly copied. However, there are
also more sophisticated algorithms, such as the synthetic minority over-sampling
technique (SMOTE), which attempts to create synthetic examples representing
the minority class by interpolating between neighboring data points [24]. Gen-
erally, adding more examples leads to larger training sets, which, in turn, leads
to increased training time. Therefore, combinations of oversampling and under-
sampling were proposed [25] [26].

5 Covariate shift

Covariate shift refers to the case where the training data and test data are
distributed differently. We assume [12]:

Ptrain (X) 7& Ptest (X)7 (6)
Ptrain(Y|X) = Ptest(Y|X)~ (7)

An example is depicted in Fig. Covariate shift appears frequently in
machine learning as discussed in Section [2] Machine learning models trained
on biased training sets tend not to generalize on test data that is from the true
underlying distribution of the population.

Example 6. Non-technical losses (NTL) appear in power grids during distri-
bution and describe irregular power usage, in particular electricity theft. NTL
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Fig. 4: Example of spatial bias: Most inspections are carried out in the small
city due to hidden selection criteria. This sample of customers inspected thus
does not represent the overall population of customers [28].

are reported to range up to 40% of the total electricity distributed in countries
such as Brazil, India, Malaysia or Pakistan [I4] 27]. Recent research on NTL
detection mainly uses machine learning models that learn anomalous behavior
from customer data and known irregular behavior that was reported through
on-site inspection results. We have previously shown that in many cases, the set
of inspected customers is biased as depicted in Fig. [4] [28]. A reason for this bias
is that past inspections have been largely focused on certain criteria and were
not sufficiently spread across the population. As a consequence, when learning
from the inspection results, a bias is learned, making predictions less reliable.

The literature distinguishes classifiers into local learners and global learn-
ers, respectively [29]. For a local learner, the prediction of the learner depends
only on P(Y|X) for an increasing number of training examples. Previous re-
search addresses this behavior with the term “asymptotically”. We assume
Pirain(Y|X) = Piest(Y]X) in Eq. Hence, a local learner is not affected by
covariate shift. Examples include logistic regression and hard-margin support
vector machine (SVM). In contrast, the prediction of a global learner depends
asymptotically on both, P(Y|X) and P(X). We assume Pirqin(X) # Prest(X)
in Eq. [0} Hence, a global learner is affected by covariate shift. Examples in-
clude decision tree learners such as ID3 or C4.5, naive Bayes and soft-margin
SVM [28]. The terms “global” and “local”, respectively, have been established
as follows: A global learner also uses P(X), which is a (global) distribution over
the entire input data. In contrast, a local learner uses P(Y'|X), which refers for
every 2(9) € X to a local distribution P(Y|z(").

When using a data set, we need to assess whether the training set has ac-
tually a covariate shift. The Kullback-Leibler divergence [30] is a measure of
the difference of two probability distributions. However, it is challenging (1) to
adapt this measure to multi-dimensional data that is a combination of discrete
and continuous features, which is common in machine learning, and (2) to define
criteria from what values on a distance is an indicator for a covariate shift. We
have recently proposed decision tree learning for finding a model that is able to
distinguish between training and test distributions. The rationale behind our
methodology is as follows: First, we add a feature s and assign the values 1 or
0 to the training data (s = 1) or test/production data (s = 0), respectively.
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Second, decision trees are global learners and thus sensitive to covariate shift.
Third, optimizing a decision tree to predict the label s and thus maximizing
this distinction between the two sets is equivalent to finding the best binary
classification between test/production data and original training data. Next,
the performance of the classifier is quantified using the Matthews correlation
coefficient (MCC), which is defined in Eq. [5} As a result, the MCC value is the
magnitude of the covariate shift in the data set [28§].

Instance weighting using density estimation has been proposed for correcting
covariate shift [3I]. Examples can either be weighted during training [32] or
the weights can be used for rejection sampling [29]. Historically, the Heckman
method has been proposed to correct covariate shift by estimating the proba-
bility of an example being selected into the training sample [33]. However, the
Heckman method only applies to linear regression models.

6 Other biases

Below we list other types of biases that have been investigated. Without any
pretension for exhaustivity, we define those biases and refer the reader to the
corresponding literature for further details. For instance, a change of functional
relations can create a new bias and thus lead to Pigin(Y|X) # Prest(Y]X)
[12]. Also, it has been shown that biases can be created by transforming the
feature space [34]. Furthermore, a bias specific to neural networks has been
reported: During training, a change of the weights in one layer may alter the
distribution of the input to the following layer. This so-called internal covariate
shift slows down convergence of training a neural network and may result in a
neural network that overfits [35]. Internal covariate shift can be compensated by
normalizing the input of every layer. By doing so, it has been reported that the
training can be significantly accelerated. The resulting neural network is also
less likely to overfit. This approach is radically different to regularization [36],
as it addresses the cause of overfitting rather than trying to improve a model
that overfits.

7 Conclusions

In this work, we first have presented a number of historic and modern examples
of biased data sets that resulted in unreliable models. Biases occur in machine
learning whenever training sets are not representative for the test data. Even
though biases have been recognized as an issue in statistics since the mid-20th
century, they only recently started to get more attention in machine learning. We
then provided an extensive review of biases in machine learning, with a (special)
focus on the most common ones: class imbalance and covariate shift. We have
shown how these biases can be quantified and corrected. As a consequence, in
many cases it may not be helpful to simply have more data, but rather to have
(possibly less) data that is more representative.
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