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Abstract. In this paper, we propose a novel approach to knowledge represen-
tation for automotive environment modelling based on Vector Symbolic Architec-
tures (VSAs). We build a vector representation describing structured information
and relations within the current scene based on high-level object-lists perceived by
individual sensors. Such a representation can be applied to different tasks with little
modifications. In a sample instantiation, we focus on two example tasks, namely
driving context classification and simple behavior prediction, to demonstrate the
general applicability of our approach. Allowing efficient implementation in Spik-
ing Neural Networks (SNNs), we envision to improve task performance of our
approach through online-learning.

1 Introduction

Precise knowledge about the current environment state and its future development is
essential for an autonomous agent to plan a secure path for navigation and to safely
interact with the world. In case of highly automated vehicles, perception of the out-
side world usually happens through a variety of different sensory systems like cameras,
RADAR and LIDAR sensors [1]. This observed information needs to be collected and
combined into a central model of the environment, which is the basis for further rea-
soning and decisions.
In this paper, we outline a first step in the direction of a cognitive approach to automo-
tive environment modelling based on Vector Symbolic Architectures (VSAs) [2]. We
build a vector description of the current scene from high-level object-lists provided by
individual sensor units. This rather generic representation can be applied to various
different tasks like driving context classification, anomaly detection, behavior analysis
and prediction with little modifications to the representation itself. Furthermore, VSAs
are suitable as inputs to Spiking Neural Networks (SNNs) [3], which support efficient
learning algorithms and future deployment on dedicated neuromorphic hardware. In
this paper, we demonstrate the general applicability of our approach on two example
tasks, namely driving context classification and behaviour prediction. For the classifi-
cation task, we present initial results while we only outline our approach for behaviour
prediction and postpone an in-depth analysis to future work.
Vector Symbolic Architectures (VSAs) is a term coined by Ross W. Gayler [2] to
cover a family of modelling approaches that represent symbols and structures by map-
ping them to (high-dimensional) vectors. Beside the numerical structure underlying
the vectors, the core components of a VSA are a measure of similarity and typically
two algebraic operations, namely superposition ⊕ and binding ⊗, which create a vec-
tor similar resp. highly dissimilar to both input vectors. For our purposes, we will
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(a) Example scene with labeled object vectors
based on environment perception

(b) System architecture

Fig. 1: Schematic system overview with one example scene.

adopt Plate’s Holographic Reduced Representations (HRRs) [4]. In this model, basis
vectors are picked from the real-valued unit sphere, the angle between vectors (or equiv-
alently the dot product) serves as a measure of similarity, superposition is realized as
component-wise vector addition and the binding operation is circular convolution. In
our work, basis vectors take the role of atomic ingredients meaning that all structured
representations are composed from combinations of basis vectors using the VSA’s al-
gebraic operations.
Related Work: Since highly automated vehicles are multi-sensory systems, current
automotive world models use mostly probabilistic approaches and Bayesian filtering.
The main difference is the level, at which sensory data is combined [5]. Low-level
resp. high-level fusion systems combine raw sensor data e.g. in an occupancy-grid [6]
or fuse preprocessed object-lists [5] respectively. The work closest to our approach
is [7], where they use symbolization, a language modelling technique, to obtain se-
mantic descriptions of driving scenes. For the specific task of recognizing the current
driving context, there have been early approaches using statistical pattern recognition
based solely on the ego-vehicle’s dynamics [8] or on fusion with camera data [9]. The
key difference to previous work is that our approach employs cognitive modelling tech-
niques, which allows us to use symbolization as well, but also to combine it with the
benefits of neural networks.

2 Implementation
System Architecture: Fig. 1b shows a schematic overview of our system architecture.
Environment perception happens through a variety of different sensors [1] providing
preprocessed data in the form of object-lists or raw sensory data. We build our repre-
sentation from this preprocessed data through vectorization of sensory data and high-
level object lists. We use a neural network depending on the given task for predictions
based on the current scene vector. In an example instantiation we use supervised learn-
ing to distinguish three different driving contexts (city, interurban, highway).
Input Data: The input data used for training and evaluating the system is real-world
data gathered during test drives in the region of Munich, Germany. Depending on the
test vehicle’s sensor setup [1], a subset of the following sensor systems is available:
camera, RADAR, LIDAR as well as the dynamics of the ego-vehicle (e.g. velocity, ac-
celeration, steering angle) through introspective sensors. While lists of dynamic objects
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(i.e. cars, pedestrians, etc.) are available from all extrospective sensors, the camera-
based perception system additionally provides lists of static objects like traffic signs. In
this work, we focus on the ego-vehicle’s dynamics and the information provided by the
camera-system as the only extrospective sensor. The camera-system is present in all
available test traces and furthermore, its data is most informative regarding categories
of dynamic objects while being the only system that provides information about traffic
signs. Beside the object’s classification, the camera systems provides estimations (with
variance) of entities like relative position, orientation and velocity for each object. The
data is divided into three different sets: one for training and two test sets containing
roughly 27 min, 18 min and 7 min respectively of driving data.
Vector Representation: In this work, we encapsulate three types of information in our
vector-based scene representation: ego-vehicle dynamics , dynamic objects and traffic
signs (provided as preprocessed object-lists). For each category, we describe the pro-
cess of converting the input data into a vector representation. We obtain the final vector
describing the current scene by superposition of all vectors created in each category.
For all our vectors in this work we have chosen a dimension of D = 512, a reasonable
trade-off between informational capacity and computational complexity.
Ego-vehicle dynamics: For ego-vehicle dynamics, we use the current velocity, ac-
celeration in x/y-direction (ego-vehicle coordinate system), the angle of the steering
wheel as well as the steering angle of the front axle. For all values except acceleration,
we randomly choose one normalized ID-vector representing the respective value, e.g.
VELOCITY = (v1, · · · ,vD) with vi ∈ R for velocity, and multiply this ID-vector with
the current scalar value x, e.g. x ·VELOCITY for velocity. Furthermore, we normal-
ize all scalar values to the range [−2,2] to keep the length of our vectors limited. For
vectorization of two-dimensional values, we use an encoding with sine and cosine func-
tions with different spatial frequencies and offsets. Therefore, we define the following
helper functions
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and obtain the final vector representation of acceleration in x/y-direction via the function

λ : R2 −→ R
D,(x,y) �−→ 1√

D
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This encoding λ (ax,ay) leads to normalized, nonzero, similar vectors with information
distributed over all elements (in contrast to a simple encoding like (ax,ay,0 · · · ,0)).
Dynamic objects: The camera-based classification system is able to distinguish seven
different object categories, namely bicycle, car, motorcycle, pedestrian, stationary, truck
and unknown. In the simplest form of our vector representation, we assign one random
vector to each of those categories and add it to the current scene representation once for
each category’s occurrence in the object-list. However, this representation just encodes
that there are certain objects present somewhere in the current scene without any addi-
tional information. Enhancing this simple encoding, we use the function λ to map each
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dynamic object’s position in x/y-direction (relative to the ego-vehicle) to vector form
and bind the result to the vector representing the object’s category. One quite unique
feature of e.g. highway driving is the fact that almost all other traffic participants drive
in similar direction as the ego-vehicle. Therefore, we create additional random vectors
encoding the orientation of dynamic objects relative to the ego-vehicle for three dis-
cretized categories, namely SAME, OPPOSITE and LATERAL. If we want to jointly
bind those two pieces of information to one object, we need to introduce two additional
ID-vectors POSITION and ORIENTATION to impose structure. For example, a car
detected at position (px, py) with approximately the same orientation as the ego-vehicle
would lead to the following vector representation

CAR+CAR⊗POSITION⊗λ (px, py)+CAR⊗ORIENTATION⊗SAME.

Traffic signs: The ego-vehicle’s camera-system [1] is able to recognize a significant
amount and variety of traffic signs. Again, we assign a random vector to each possible
traffic sign label and add it to the current scene representation. However, in contrast
to dynamic objects, most traffic signs are not only valid while being visible but stay
relevant for the current driving context until withdrawn by another sign. Therefore, we
implemented a simple form of memory for a certain subset of traffic signs relevant to
the task of driving context classification even after disappearing. Due to the fact, that
the camera system is not immune to false detections, we implemented a decaying mem-
ory, to avoid relying too much on false detections and to allow the system to consider
other cues. Furthermore, we included a simple withdraw logic, e.g. new speed limit
signs overwrites previously seen ones and a sign indicating a city entrance withdraws a
memorized highway sign.
Training: To enable automated training of any supervised learning system, the training
data needs to be labeled. In this work, we hand-labeled our data sets by visually in-
specting the images provided by a reference camera-system and labelling the intervals
between transitions of driving contexts as indicated by the respective traffic signs.
For actual training of our system, we used the software suite Neural Engineering Ob-
jects (Nengo) [10] for neural simulations, an implementation of the Neural Engineering
Framework (NEF) [11]. This allows rapid training and testing while at the same time
setting up our system in the framework of neural computation. However, we also trained
a network using the Keras library [12] for reference. The neural ensemble trained in
the Nengo simulator consists of 1500 Leaky-Integrate-and-Fire (LIF) spiking neurons,
while we use a simple two-layer network consisting of 1500 and 500 neurons per layer
in Keras.
Behaviour Prediction: In a second example task, we use our vector representation as
input data for another neural network to predict the future position of one other traffic
participant at a time. We use an additional indication vector THIS bound to the ob-
ject we want to predict to tell the network the current focus. To predict all objects of
the scene during deployment, we envision to use multiple instantiations of the same net-
work. Thereby, the amount of training data generated per file increases with the number
of objects while we only need to train one network. We expect that our structured vec-
tor representation will be able to capture relations and mutual influence between traffic
participants necessary for reliable prediction when combined with memory.
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(a) Nengo network (b) Keras network (c) Human performance

Fig. 2: Comparison of context classification results against human level performance.

3 Results
Human Level Performance: To get a better understanding of the quality of the context
classification system’s results, we compare it to human level performance. However,
neither showing raw camera images nor numerical vectors would yield comparable re-
sults. Therefore, we created human-readable versions of our input vectors in text form
and presented a subset of 50 random samples for each data set (with the training set
always being the first) to two human subjects asking for their classification guess. The
accumulated results are shown in Fig. 2c.
Classification Performance: In our experiments, we found that the vector represen-
tation with decaying memory for traffic signs as well as structured information (posi-
tion/orientation of dynamic objects) works best for driving context classification (cf.
Fig. 2a, 2b). Given the limited amount of training data, the system is able to reliably
distinguish the city and highway categories, even in the absence of traffic signs indi-
cating the start of a highway as well as examples of the interurban category similar to
those in the training set (Test set 2). By introducing a more sophisticated network struc-
ture and learning algorithm in Keras, we were able to improve performance to a level
comparable with human level performance on Test set 2 (cf. Fig. 2b, 2c) and superior
to previous work [8]. The interurban category, however, is problematic being the main
factor for our system to deliver poor classification results on Test set 1 (cf. Fig. 2).
There are two reasons: firstly, the largest part of Test Set 1 labelled as interurban driv-
ing is heavy stop-and-go traffic, which is dissimilar to all interurban examples in the
training set, and secondly the camera-system misses to detect a traffic sign indicating a
city exit.

4 Discussion
Conclusion: We presented a novel approach to knowledge representation for automo-
tive environment modelling and demonstrated applicability on two example tasks. We
showed initial results on the task of driving context classification compared to human
performance and related work, while we only outlined our approach to behaviour pre-
diction. Given the limited data, we expect our system to improve significantly with
increasing number and diversity of training examples. However, we consider the gen-
eral approach of using cognitive modelling techniques in automotive context the main
contribution of this work. With highly automated driving on the horizon, machine learn-
ing in general becomes increasingly important in the automotive domain. Our approach
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offers a unified representation, which can be the basis for different learning algorithms.
Finally, our vector representation allows implementation in the framework of SNNs
using the principles of the NEF. This framework allows us to apply (online) learning
and to deploy our system on energy-efficient neuromorphic hardware, which could be a
promising addition in automotive context, where energy-efficiency is essential. There-
fore, we believe that our work is a promising first step in the direction of a cognitive
automotive environment model.
Future Work: Although our results are promising, there are several options for future
enhancements. Instead of choosing basis vectors at random with no inherent structure or
similarity, we envision to build a basis vector vocabulary through a learning system that
is able to encapsulate different levels of similarity (e.g. visual, contextual, semantic).
We also aim to further investigate our approach on the task of predicting the behaviour
of other traffic participants around the ego-vehicle. Furthermore, we intend to apply the
developed representation to other driving-related tasks like prediction of traffic signs
expected in the current driving context or anomaly detection (e.g. discrepancy between
expected and perceived traffic signs).
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