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Abstract. Extreme Learning Machine (ELM) and Minimal Learning
Machine (MLM) are nonlinear and scalable machine learning techniques
with randomly generated basis. Both techniques share a step where a
matrix of weights for the linear combination of the basis is recovered.
In MLM, the kernel in this step corresponds to distance calculations be-
tween the training data and a set of reference points, whereas in ELM
transformation with a sigmoidal activation function is most commonly
used. MLM then needs additional interpolation step to estimate the ac-
tual distance-regression based output. A natural combination of these
two techniques is proposed here, i.e., to use a distance-based kernel char-
acteristic in MLM in ELM. The experimental results show promising
potential of the proposed technique.

1 Introduction

Kernels or basis functions have a central role in machine learning. The appear-
ance of Radial Basis Function networks (RBFN) (e.g., [1]) made it clear that
universal approximation property of a neural network technique does not need
a fully adaptable basis. With a priori fixed location and scatter parameters of
radial basis functions, one could construct nonlinear approximators of unknown
functions. Actually already in [2] something similar was suggested for the Mul-
tilayered Perceptron (MLP, e.g. [7]): first optimize all weights using the whole
data and then freeze the hidden layer weights in the nonlinear cross-validation,
by only adapting the weights in the outer layer.

In MLP and in deep learning (see [8] and articles therein), we might have
a large pool of adaptation in the deeply layered basis. However, the Extreme
Learning Machine (ELM) as proposed by Huang et al. [4, 5], established one
of the key randomized neural network frameworks without kernel adaptation
[6]. Probabilistic convergence analysis of ELM was presented in [3], where the
necessity of the repeated sampling of the sigmoidal kernel and the advantage of
the weight decay (ridge regression) were concluded.

Recently, a new supervised learning method, called Minimal Learning Ma-
chine (MLM, [9, 10]), emerged. MLM is based on the idea of the existence of a
mapping between the geometric configurations of points. This configuration is
seeked using a distance-based regression technique, where both input and output
data are sampled and two distance-matrices are formed between these reference
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points and the whole training data. For the output of any test observation, an
interpolation problem using the computed distances needs to be solved. Both
ELM and MLM contain only one hyperparameter: the size of the hidden layer
in ELM or number of reference points in MLM. Actually both definitions are
typically proportional to the number of observations available in the training set
[4, 5, 10, 11].

This paper proposes and describes a natural combination of ELM and MLM:
Extreme Minimal Learning Machine (EMLM). The technique uses distance-
based kernel according to MLM to generate a random basis for a nonlinear
approximation. Then, similarly to ELM (and to many other basically linear
techniques [13]), regularized least-squares problem is solved to recover the ma-
trix of weights. Compared to MLM, we then omit solution of the optimization
problem to estimate the actual distance-regression based output.

2 The Extreme Minimal Learning Machine Method

Let {xi,yi}Ni=1, xi ∈ R
n and yi ∈ R

k, be the training data of input-output
samples. In ELM, we associate for each bias-enlarged input x̃i = [1 xT

i ]
T ∈

R
n+1 the sigmoidal basis function hi =

1
1+exp(−Gx̃i)

, where G ∈ R
m×(n+1) with

(G)ij ∈ U([−1, 1]) (uniform distribution on [−1, 1]). Here m denotes the number
of basis functions. To determine weights for the linear combination of this basis,
let us consider the regularized least-squares optimization problem

min
V∈Rk×m

J (V), where J (V) =
1

2N

N∑

i=1

‖Vhi − yi‖22 +
α

2m

k∑

i=1

m∑

j=1

|Vij |2. (1)

The coefficients 1
N and 1

m in J (V) normalize the components with respect to
the amount of data and the size of basis, respectively. α > 0 is the Tykhonov reg-
ularization/weight decay parameter, which restricts the increase of the weights
and, by enforcing strict coercivity, guarantees the unique solvability of (1). The
solution W ∈ R

k×m of the problem satisfies as

1

N
(WH−Y)HT +

α

m
W = 0, (2)

where H = {hi}Ni=1 ∈ R
m×N and Y = {yi}Ni=1 ∈ R

k×N .
In the minimal learning machine, construction of distance-based random basis

starts by a selection ofm reference pointsR = {ri}mi=1 such that, for all i, ri = xj

for some j. Hence, {ri}mi=1 is a random subset of input vectors. With the two
set of vectors, the set of reference points and the whole set of input vectors, we
define the matrix H ∈ R

m×N as

(H)ij = ‖ri − xj‖2. (3)

A method referred as Extreme Minimal Learning Machine, EMLM, is obtained
when (3) is used in (2).

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6. 
Available from http://www.i6doc.com/en/.  

238



Dataname TrainN N NT n k R-MCP

Overlap �N/2� 3 960 990 2 4 16.3
Outdoor �N/2� 2 400 1 600 21 40 29.0
COIL �N/2� 1 800 5 400 20 100 3.5
Satimage �N/2� 4 435 2 000 36 6 -
Letter �N/2� 16 000 4 000 16 26 3.0
USPS N 7 291 2 007 256 10 4.6
Isolet N 6 238 1 559 617 26 3.8
MNIST �3N/4� 60 000 10 000 666 10 5.2

Table 1. Description of test datasets.

Let us briefly comment the proposed method. The basic ingredient is that the
sigmoidal transformation of input vectors in ELM is replaced with the distance-
based kernel underlying MLM. When compared to the classical forms of sig-
moidal or gaussian basis, the distance-based form is mathematically of very
different nature. In particular, the nonlinearity in (3) is not based on any trans-
formation with a nonlinear function. Moreover, the proposed approach has cer-
tain lazy flavor, because output for a test observation needs re-estimation of the
kernel. Therefore, it will be interesting to assess the approximation properties of
such an approach in what follows.

3 Experiments

Reference versions of the techniques in Section 2 were implemented with Matlab
(R2015b). Datasets for the tests mostly originate from the UCI machine learning
repository. Because of the incremental flavor of MLM and for comparison, we
used almost the same datasets as in [14]. The datasets are described in Table 1.
There, TrainN refers to the maximum size of hidden layer m (wrt N), N denotes
the number of training and NT the test observations, n refers to the dimension
of the data, k gives number of classes, and ”R-MCP” includes the best reference
result from [14] as MisClassifications in Percentages, MCP.

Output vectors were formed using 1-of-k encoding and α = 10−6 was fixed
throughout. As preprocessing, we removed constant variables and min-max scaled
all features into [0, 1]. We also realized the Leave-One-Out cross-validation tech-
nique (TR-PRESS in [15], with the suggested efficient implementation) to iden-
tify the only metaparameter, m, needed in both techniques. Note that we then
measure the least-squares approximation error of the methods on a complete
different scale compared to MCP.

For the results, the minimum value of m was set to 50 and it was then
incremented with stepsize 10 for the first five datasets, with small number of
features, that were trained until �N/2�. The incremental training was stopped
before �N/2� when either 99.9% training accuracy was obtained or ten incre-
ments without training error improvement were faced by both of the two tech-
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Fig. 1. Outdoor: training errors (left) and test errors (right).

niques. The three larger dimensional datasets were trained until N or �3N/4�,
with the incrementation stepsize 1% of N .

Results of the experiments are given in Table 2. There, for ELM and EMLM,
we report the smallest training set MCP-error ”Tr”, the LOO-CV/TR-PRESS-
error ”LO”, and the separate test set error ”Ts”. All these are searched separately
from all the tested values of m in each experiment, and this value is given before
the error (i.e., format ”m: Err”).

Behavior of training errors and test errors for the two techniques are further
illustrated in Figs. 1 and 2. They illustrate the common behavior: for Overlap,
Outdoor, COIL, Satimage, Letter, and Isolet, the training of ELM deteriorated
when m was increased yielding to the increase of the test error as well. This did
not happen to USPS and MNIST. For EMLM, training failed for some values
of m only for Letter and otherwise, for the tested values, both the training
and test error showed generally a nonincreasing trend. Hence, the training error
is readily useful for EMLM to search for an appropriate value of m. This is

Data ELM/Tr EMLM/Tr ELM/LO EMLM/LO ELM/Ts EMLM/Ts

Overlap 80: 29.2 300: 14.9 50: 2.9e-3 90: 1.3e-5 80: 28.9 180: 16.0
Outdoor 430: 8.5 790: 1.5 80: 8.4e-8 180: 7.1e-5 100: 41.8 490: 29.5
COIL 330: 12.8 730: 3.5 50: 1.7e-7 130: 1.5e-4 230: 20.0 840: 5.7
Satimage 1380: 4.0 2140: 2.6 260: 9.3e-8 530: 1.4e-5 480: 11.3 1920: 8.1
Letter 690: 7.2 1470: 4.8 140: 6.3e-8 530: 9.9e-5 690: 11.5 1480: 8.9
USPS 4649: 0.1 7131: 0.0 3481: 1.3e-6 707: 4.4e-5 2678: 4.2 5963: 4.1
Isolet 3515: 0.0 5972: 0.0 50: 4.6e-9 428: 8.8e-5 1688: 6.3 4460: 2.9
MNIST 21050: 0.0 40250: 0.3 29450: 2.7e-6 3650: 9.7e-6 21050: 1.8 28250: 1.6

Table 2. Experimental results.
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Fig. 2. Test errors for Isolet (left) and MNIST (right).

important, because we were not able to identify suitable values of m for either
of the techniques with LOO-CV.

EMLM training always gave smaller test error level compared to ELM. Com-
pared to the R-MPC values in Table 1, the results were especially competitive
for the largest three problems.

4 Conclusions

In this work, a combination of two scalable machine learning techniques, ELM
and MLM, with random kernels was proposed. The straightforward idea was to
use the distance-based kernel from MLM in ELM-like regularized least-squares
framework. The obtained results indicate that the distance-based random basis
is a viable option for a random kernel with such techniques. The EMLM ap-
peared more stable than ELM in the experiments and, hence, it seems easier
to find a good value of the only metaparameter m. This issue and more experi-
ments should be carried out to understand better the behavior of the proposed
technique. The results of EMLM for the three largest datasets, USPS, Isolet
and especially MNIST, showing no indication of overlearning actually explain
the success of deep learning with enriched learning data for these problems: the
noise in classification is negligible so only the flexibility of basis for maximally
descriptive learning data matters for the test result accuracy.
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