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Abstract. We derive a novel sensitivity analysis of input variables for
predictive epistemic and aleatoric uncertainty. We use Bayesian neural
networks with latent variables as a model class and illustrate the usefulness
of our sensitivity analysis on real-world datasets. Our method increases
the interpretability of complex black-box probabilistic models.

1 Introduction

Extracting human-understandable knowledge out of black-box machine learning
methods is an important topic of research. One aspect of this is to figure out how
sensitive the model response is to which input variables. This can be useful both
as a sanity check, if the approximated function is reasonable, but also to gain
new insights about the problem at hand. For neural networks this kind of model
inspection can be performed by a sensitivity analysis [1, 2], a simple method
that works by considering the gradient of the network output with respect to
the input variables.

Our key contribution is to transfer this idea towards predictive uncertainty:
What features impact the uncertainty in the predictions of our model? To that
end we use Bayesian neural networks with latent variables [3, 4], a recently intro-
duced probabilistic model that can describe complex stochastic patterns while at
the same time account for model uncertainty. From their predictive distributions
we can extract epistemic and aleatoric uncertainties [5, 4]. The former uncer-
tainty originates from our lack of knowledge of model parameter values and is
determined by the amount of available data, while aleatoric uncertainty consists
of irreducible stochasticity originating from unobserved (latent) variables. By
combining the sensitivity analysis with a decomposition of predictive uncertainty
into its epistemic and aleatoric components, we can analyze which features in-
fluence each type of uncertainty. The resulting sensitivities can provide useful
insights into the model at hand. On one hand, a feature with high epistemic
sensitivity suggests that careful monitoring or safety mechanisms are required
to keep the values of this feature in regions where the model is confident. On
the other hand, a feature with high aleatoric uncertainty indicates a dependence
of that feature with other unobserved/latent variables.

2 Bayesian Neural Networks with Latent Variables

In this section we review a recent family of flexible probabilistic models for multi-
output regression. These models were previously introduced by [3] and we refer
to them as Bayesian Neural Networks with latent variables (BNN+LVs).
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Given data D = {xn,yn}Nn=1, formed by feature vectors xn ∈ RD and tar-
gets yn ∈ RK , we assume that yn = f(xn, zn;W) + εn, where f(·, ·;W) is the
output of a neural network with weights W and K output units. The network
receives as input the feature vector xn and the latent variable zn ∼ N (0, γ). We
choose rectifiers, ϕ(x) = max(x, 0), as activation functions for the hidden lay-
ers and and the identity function, ϕ(x) = x, for the output layer. The network
output is corrupted by the additive noise variable εn ∼ N (0,Σ) with diagonal
covariance matrix Σ. The role of the latent variable zn is to capture unobserved
stochastic features that can affect the network’s output in complex ways. The
network has L layers, with Vl hidden units in layer l, and W = {Wl}Ll=1 is the
collection of Vl × (Vl−1 + 1) weight matrices. The +1 is introduced here to ac-
count for the additional per-layer biases. We approximate the exact posterior
p(W, z | D) with:

q(W, z) =

 L∏
l=1

Vl∏
i=1

Vl−1+1∏
j=1

N (wij,l|mw
ij,l, v

w
ij,l)


︸ ︷︷ ︸

q(W)

×

[
N∏

n=1

N (zn |mz
n, v

z
n)

]
︸ ︷︷ ︸

q(z)

. (1)

The parameters mw
ij,l, v

w
ij,l and mz

n, vzn are determined by minimizing a diver-
gence between p(W, z | D) and the approximation q. The reader is referred to
the work of [6, 3] for more details on this. In our experiments, we tune q using
black-box α-divergence minimization with α = 1.0.

2.1 Uncertainty Decomposition

BNNs+LVs can capture complex stochastic patterns, while at the same time
account for model uncertainty. They achieve this by jointly learning q(z), which
describes the values of the latent variables that were used to generate the training
data, and q(W), which represents uncertainty about model parameters. The
result is a flexible Bayesian approach for learning conditional distributions with
complex stochasticity, e.g. bimodal or heteroscedastic noise [3].

The predictive distribution of a BNN+LVs for the target variable y? associ-
ated with the test data point x? is

p(y?|x?) =

∫
p(y?|W,x?, z?)p(z?)q(W) dz? dW . (2)

where p(y?|W,x?, z?) = N (y?|f(x?, z?;W),Σ) is the likelihood function, p(z?) =
N (z?|0, γ) is the prior on the latent variables and q(W) is the approximate
posterior for W given D. In this expression the integration with respect to z?
must be done using the prior p(z?). The reason for this is that the y? associated
with x? is unknown and consequently, there is no other evidence on z? than the
one coming from p(z?).

In Eq. (2), the randomness or uncertainty on y? has its origin in W ∼ q(W),
z? ∼ p(z?) and ε ∼ N (0, σ2). This means that there are two types of uncer-
tainties entangled in our predictons for y?: aleatoric and epistemic [7, 5]. The
aleatoric uncertainty originates from the randomness of z? and ε and cannot be
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reduced by collecting more data. By contrast, the epistemic uncertainty origi-
nates from the randomness of W and can be reduced by collecting more data,
which will typically shrink the approximate posterior q(W).

We can use the variance σ2(y?k|x?) as a measure of predictive uncertainty for
the k-th component of y?. The variance can be decomposed into an epistemic
and aleatoric term using the law of total variance:

σ2(y?k|x?) = σ2
q(W)(Ep(z?)[y

?
k|W,x?]) + Eq(W)[σ

2
p(z?)(y

?
k|W,x?)] (3)

The first term, that is σ2
q(W)(Ep(z?)[y

?
k|W,x?]) is the variability of y?k, when we

integrate out z? but not W. Because q(W) represents our belief over model
parameters, this is a measure of the epistemic uncertainty. The second term,
Eq(W)[σ

2
p(z?)(y

?
k|W,x?)] represents the average variability of y?k not originating

from the distribution over model parameters W. This measures aleatoric uncer-
tainty, as the variability can only come from the latent variable z?.

3 Sensitivity Analysis of Predictive Uncertainty

We want to extend the method of sensitivity analysis toward predictive uncer-
tainty: how much does each feature affect each type of uncertainty? Answers to
this question can provide useful insights about a model at hand. For instance, a
feature with high aleatoric sensitivity indicates a strong interaction with other
unobserved/latent features. If a practitioner can expand the set of features by
taking more refined measurements, it may be advisable to look into variables
which may exhibit dependence with that feature and which may explain the
stochasticity in the data. Furthermore, a feature with high epistemic sensitivity,
suggests careful monitoring or extended safety mechanisms are required to keep
this feature values in regions where the model is confident.

We start by briefly reviewing the technique of sensitivity analysis [1, 2], a
simple method that can provides insight into how changes in the input affect the
network’s prediction. Let y = f(x;W) be a neural network fitted on a training
set D = {xn,yn}Nn=1, formed by feature vectors xn ∈ RD and targets yn ∈ RK .
We want to understand how each feature i influences the output dimension k.
Given some test data Dtest = {x?

n,y
?
n}

Ntest
n=1 , we use the partial derivate of the

output dimension k w.r.t. feature i:

Ii,k =
1

Ntest

Ntest∑
n=1

∣∣∂f(x?
n)k

∂x?i,n

∣∣ . (4)

In Section 2.1 we saw that we can decompose the variance of the predictive
distribution of a BNN with latent variables into its epistemic and aleatoric com-
ponents. Our goal is to obtain sensitivities of these components with respect to
the input variables. For this we use a sampling based approach to approximate
the two uncertainty components [4] and then calculate the partial derivative of
these w.r.t. to the input variables. For each test data point x?

n, we perform
Nw×Nz forward passes through the BNN. We first sample w ∼ q(W) a total of
Nw times and then, for each of these samples of q(W), performing Nz forward
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passes in which w is fixed and we only sample the latent variable z. Then we
can do an empirical estimation of the expected predictive value and of the two
components on the right-hand-side of Eq. (3):

E[y?n,k|x?
n] ≈ 1

Nw

1
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where y?nw,nz
(x?

n)k = f(x?
n, z

nw,nz ;Wnw)k and σ̂2
Nz

(σ̂2
Nw

) is an empirical esti-
mate of the variance over Nz (Nw) samples of z (W). We have used the square
root of each component so all terms share the same unit of y?n,k. Now we can
calculate the sensitivities:
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where Eq. (8) is the standard sensitivity term. We also note that the general
drawbacks [2] of the sensitivity analysis, such as considering every variable in
isolation, arise due to its simplicity. These will also apply when focussing on the
uncertainty components.

4 Experiments

In this section we want to do an exploratory study. For that we will first use
an artifical toy dataset and then use 8 datasets from the UCI repository [8] in
varying domains and dataset sizes. For all experiments, we use a BNN with 2
hidden layer. We first perform model selection on the number of hidden units per
layer from {20, 40, 60, 80} on the available data. We train for 3000 epochs with
a learning rate of 0.001 using Adam as optimizer. For the sensitivity analysis we
will sample Nw = 200 w ∼ q(W) and and Nz = 200 samples from z ∼ N (0, γ).
All experiments were repeated 5 times and we report average results.

4.1 Toy Data

We consider a regression task for a stochastic function with heteroskedastic noise:
y = 7 sin(x1) + 3| cos(x2/2)|ε with ε ∼ N (0, 1). The first input variable x1 is re-
sponsible for the shape of the function whereas the second variable x2 determines
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Fig. 1: Sensitivity analysis for the predictive expectation and uncertainty on toy
data (a) and UCI datasets (b)-(i). Top row shows sensitivities w.r.t. expectation
(Eq. (8)). Middle and bottom row show sensitivities for epistemic and aleatoric
uncertainty (Eq. (9) and Eq. (10)). Error bars indicate standard errors.

the noise level. We sample 500 data points with x1 ∼ exponential(λ = 0.5)− 4
and x2 ∼ U(−4, 4). Fig. 1a shows the sensitivities. The first variable x1 is re-
sponsible for the epistemic uncertainty whereas x2 is responsible for the aleatoric
uncertainty which corresponds with the generative model for the data.

4.2 UCI Datasets

We consider several real-world regression datasets from the UCI data repository
[8]. Detailed descriptions can be found on the respective website. For evaluation
we use the same training and test data splits as in [6]. In Fig. 1 we show
the results of all experiments. For some problems the aleatoric sensitivity is
most prominent (Fig. 1f,1g), while in others we have predominately epistemic
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sensitivity (Fig. 1e,1h) and a mixture in others. This makes sense, because we
have variable dataset sizes (e.g. Boston Housing with 506 data points and 13
features, compared to Protein Structure with 45730 points and 9 features) and
also likely different heterogeneity in the datasets.

In the power-plant example feature 1 (temperature) and 2 (ambient pres-
sure) are the main sources of aleatoric uncertainty of the target, the net hourly
electrical energy output. The data in this problems originates from a combined
cycle power plant consisting of gas and steam turbines. The provided features
likely provide only limited information of the energy output, which is subject
to complex combustion processes. We can expect that a change in temperature
and pressure will influence this process in a complex way, which can explain the
high sensitivities we see. The task in the naval-propulsion-plant example, shown
in Fig. 1i, is to predict the compressor decay state coefficient, of a gas turbine
operated on a naval vessel. Here we see that two features, the compressor inlet
air temperature and air pressure have high epistemic uncertainty, but do not
influence the overall sensitivity much. This makes sense, because we only have a
single value of both features in the complete dataset. The model has learned no
influence of this feature on the output (because it is constant) but any change
from this constant will make the system highly uncertain.

5 Conclusion

In this paper we provided a new way of sensitivity analysis for predictive epis-
temic and aleatoric uncertainty. Experiments indicate useful insights of this
method on real-world datasets.
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