
Evolutionary Composition of Customised Fault
Localisation Heuristics

Diogo M. de Freitas1, Plinio S. Leitao-Junior12,
Celso G. Camilo-Junior1 and Rachel Harrison2 ∗

1- Universidade Federal de Goias (UFG) - Instituto de Informatica (INF)
Alameda Palmeiras, Quadra D, Campus Samambaia, Goiania, Goias - Brazil

2- Oxford Brookes - Dept of Computing and Communication Technologies
Wheatley Campus, OX33 1HX, Wheatley, Oxford - United Kingdom

Abstract. Fault localisation is one of the most difficult and costly parts
in software debugging. Researchers have tried to automate this process by
formulating measures for assessment of code elements’ suspiciousness. This
paper reports an evolutionary-based approach to combine non-linearly 34
previous measures to formulate a new program oriented fault localisa-
tion heuristic. The method was evaluated with 107 single-bug programs
and compared against 35 approaches – 34 spectrum-based heuristics and
a previous evolutionary linear combination approach. The experiments
have shown that the proposal consistently achieved competitive results
compared to the others according to several effectiveness metrics.

1 Introduction

During the software development and maintenance life cycle, faults are con-
stantly introduced and repaired. Debugging is a time-consuming process which
aims to locate and fix existing faults detected in the software life cycle.

Among the essential tasks that are associated with debugging, fault localisa-
tion (FL) is one of the most difficult and exhausting [1] and refers to finding the
actual location of the faults that are associated with the perceived deviation from
the system’s specification (software failure). Due to the increasing complexity
in software projects, FL is increasingly becoming an onerous task [2, 3].

This paper focuses on spectrum-based fault localisation (SFL) heuristics,
which are based on spectra data and apply formulae to find the elements that
are responsible for failures [4]. A Program spectrum is the set of data collected at
run-time that refers to the behaviour of program executions (successful/failed),
i.e. it’s possible to relate software elements to failure occurrence [5].

For each element n (lines or blocks of code), a SFL heuristic calculates a
suspiciousness score S(n), that represents the strength of association between
an element’s executions and failure occurrences. Once every S(n) is calculated,
a list can be organized in descending order so that the developer can analyze
the elements from top (greater score) to bottom until all faults are located.

Although many researches have proposed SFL heuristics, individual perfor-
mances of heuristics are similar and not sufficient, and there is no single heuristic

∗We thank CAPES and Universidade Federal de Goias for the support and Oxford Brookes
University for the facilities to develop the research.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

691

that is good in every situation. So we follow the reasoning that a composition
of different heuristics could be better than just one.

In [6], Wang et al. presented the seminal method for the combination of 22
existing SFL heuristics for a customised heuristic, but it is restricted to a linear
combination and the formulae are trained to a set of programs as a whole.

This research is a follow-up to our previous work [7] and uses a Genetic
Programming (GP) algorithm to formulate SFL heuristics by searching within all
valid mathematical combinations of a group of functions and spectra variables.
In the context of heuristic combination, the innovative aspects of our proposal
are: (i) non linearity of the resulting formulae; (ii) suspiciousness heuristics fitted
to potential faults in customised program fashion, i.e. the formulae are trained
for each individual program; as well as (iii) the combination of SFL Heuristics
that are commonly applied in FL [8] (different to the ones used in [6] and [7])
with basic spectrum variables, the ones used internally by the SFL Heurisitics
formulae.

We evaluate empirically the performance of the proposed method over a set
of baselines in terms of: the overall ability of localising faults (RQ1) and the
number of program elements investigated to find the existing faults (RQ2).

The text is structured as follows. Sections 2 and 3 introduces related work
and the proposed approach, respectively; the experiments are described in Sec-
tion 4; Section 5 presents the results their analysis; and Section 6 concludes and
shows future work.

2 Related Work

SFL heuristics are commonly equations that use spectrum variables such as:
number of test cases n; code element e; number of successful [or failed] executions
ns [nf]; number of successful [or failed] executions of element e ns(e) [or nf (e)];
and number of successful [or failed] runs that don’t execute the element ns(e) [or
nf (e)]. Thus the research field has introduced several SFL heuristics to calculate
the suspiciousness score; e.g.Tarantula [9] and Ochiai [10] (Equations 1 and 2).

S(e)tarantula =

nf (e)
nf

ns(e)
ns

+
nf (e)
nf

(1)
S(e)ochiai =

nf (e)√
nf × n(e)

(2)

Wang et al. [6] proposed a Genetic Algorithm (GA) search for the 22 weights
wn in Equation 3 that correspond to each Hn SFL Heuristic (Tarantula and
Ochiai along with 20 association measures). Thus, the generated composite
heuristic HC(e) (Equation 3) is a linear combination of previous heuristics. The
weights are the individuals and they are represented in binary form.

S(e)linear composition = Hc(e) = w1×H1(e)+w2×H2(e)+· · ·+w22×H22(e) (3)

Yoo [11] introduced a Genetic Programming (GP) approach for evolving
risk assessment formulae using only coverage variables (not a composition of

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

692

heuristics), and Xie et al. [12] performed theoretical evaluations of Yoo’s GP-
evolved formulae for programs with a single fault and stated that the GP can
be an adequate tool for designing the risk evaluation of program elements.

3 Approach

This paper presents a development over the aforementioned efforts in the form
of a Genetic Programming-based approach to combine existing SFL Heuristics.
The resulting suspiciousness heuristics are not limited by linear combination
(such as in [6]) as more complex formulae are allowed. Furthermore, the ap-
proach formulates program-oriented fault localisation heuristics, i.e. the heuris-
tics are trained per program and hence more specialised, different from [11].

The search space is defined by all valid GP individuals composed by the
functions observed in SFL Heuristics (+, −, ∗, ÷,

√
, log and max) and the

set of terminals defined by 34 SFL Heuristics (the ones listed in Table 4 of [8]
along with Tarantula, Ochiai, Ochiai2) and the 4 spectrum variables in Section
2. The fitness function is the average proportion of program elements that need
to be investigated to locate all faults in each program.

The proposed method is structured in two phases, training and deployment.
In the training phase, an heuristic is customised to a program with a set of
its known faulty versions by the GP algorithm. It’s expected that the trained
heuristic will be used in the debugging of many future versions of the program.
In our experiments we use two thirds of the versions of each program to training
and validate the results with the other one third. This process is repeated many
times to account for the GP’s stochastic nature. Equation (4) is an example of
an obtained solution, where Hi denotes an existing SFL Heuristic.

log

((√
max

(
max(H21,H30),nf (e)

)
−
√
H5+H15+H5+H11

)
√

nf (e)−
√
H13−H31

)
4
√

H7 × n(e)
(4)

4 Experiments

To compare the performance of the proposal we applied the 34 SFL Heuristics
listed in a recent Survey [8] as they are the most used in FL studies. The
linear composition approach proposed by Wang et al. [6] (GA-based method) is
used as the evolutionary baseline for the evaluation. We named the baselines as
H1, H2, ...,H34 (adopting the numbering of Table 4 from [8] with Tarantula as
H32, Ochiai as H33 and Ochiai2 as H34), GA and GP (our method).

Seven programs from the Siemens Suite were used: printtokens, printtokens2,
replace, schedule, schedule2, tcas, tot info. We selected 107 faulty versions and
their spectra were generated with the tools lcov, gcov (a GNU standard test
coverage tool) and a custom program. Another third party tool used was the Java
framework JGAP, which allows the abstraction of the basic operators necessary
for the implementation of evolutionary algorithms.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

693

For both the GA and the GP, JGAP was used with the most basic settings
(standard configuration), and we applied lines of code as the basic atomic ele-
ment. We specify the number of runs as 30 aiming to reduce stochastic effects.
We performed a cross validation: two groups are used for training and the re-
maining one used for testing, and three iterations are performed so that each
group of programs is used once as the testing set.

5 Results

To analyse the number of investigated elements, we apply two evaluations: Ac-
curacy (acc@n), refers to the number of faults that have been localised within
the top n places of the ranking (upper values are better); and Wasted Effort
(wef@n): refers to the amount of effort wasted looking at non-faulty program
elements (lower values are better). We used 1, 3, and 5 as the values for n.

The overall results of the fault localisation are shown in Table 1. It presents
acc and wef values of all programs for 34 metrics, GA, and GP. For n = 1, GP
outperformed all others, which represents better results for the minimal effort
to localise faults. With respect to the GA results, they were poor in relation to
most of the metrics, which may be related to the linearity of the GA equations.

acc@1 acc@3 acc@5 wef@1 wef@3 wef@5
M 1 7 21 25 100 279 446
M 2 7 23 28 100 276 438
...

M 34 7 22 28 100 277 439
GA 0.33 6.77 9.00 106.67 313.20 509.33
GP 8.77 23.27 35.53 98.23 272.23 419.67

Table 1: Evaluation measures: acc@n and wef@n.

We have two research questions, which are discussed next.
RQ1: How do the performances for fault localisation compare?
We calculate the mean position of a ranking related to the acc and wef

measures, referred to as Average Rank. For each evaluation measure (acc@1,
acc@3, and so on), the average rank of Metric M is the mean position of its
relative quality positions (1st, 2nd, 3rd, etc.) computed for all programs. The
average rank is presented in Table 2. We highlight in bold that the average ranks
for GP are better across almost all columns in Table 2. This occurs since GP
values consistently perform best when looking at individual programs.

acc@1 acc@3 acc@5 wef@1 wef@3 wef@5
GP: 15.57 GP: 9.57 GP: 5.86 GP: 15.57 GP: 7.86 GP: 8.14
M7 : 25.14 M16 : 16.43 M29 : 9.00 M7 : 25.14 M11 : 14.14 M16 : 8.14
M16 : 30.00 M29 : 16.43 M16 : 9.00 M16 : 30.00 M16 : 14.14 M29 : 8.14
M29 : 30.00 M11 : 17.57 M7 : 18.57 M29 : 30.00 M29 : 14.14 M11 : 14.14
M8 : 31.00 M5 : 20.57 M33 : 19.86 M8 : 31.00 M24 : 15.86 M24 : 14.29

Table 2: Average rank: acc@n and wef@n.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

694

RQ2: How many program elements must be investigated to find the faults?
We show the analysis of two programs: the ones next to the minimum and

maximum number of faults (7 and 28 fault versions, respectively), to avoid fewest
and most-trained formulae. Table 3 reveals the top-five metrics of acc and wef
values for Programs replace and schedule. Each column is ordered independently
(better values first). Note that GP values are all bold in the table, showing
better-adapted performance than others. Furthermore, their values take the top
values in 9 of the 16 evaluation measures.

P3 – replace – (28 versions)
acc@1 acc@3 acc@5 wef@1 wef@3 wef@5
M16: 6 GP: 12.3 GP: 13.93 M16: 22 GP: 56.6 GP: 84.93
M29: 6 M16: 12 M7: 13 M29: 22 M16: 57 M16: 87
GP: 5.63 M29: 12 M16: 13 GP: 22.37 M29: 57 M29: 87
M1: 5 M2: 10 M29: 13 M1: 23 M2: 61 M2: 97
M2: 5 M5: 10 M2: 10 M2: 23 M5: 61 M5: 97

P4 – schedule – (7 versions)
acc@1 acc@3 acc@5 wef@1 wef@3 wef@5
GP: 0.33 M5: 2 GP: 3.6 GP: 6.67 M11: 17 M11: 26
GA: 0 M11: 2 M11: 3 GA: 7 M5: 18 GP: 26.23
M1: 0 GP: 1.03 M16: 3 M1: 7 GP: 18.7 M5: 28
M2: 0 M1: 1 M29: 3 M2: 7 M7: 19 M16: 28
M3: 0 M2: 1 GA: 2 M3: 7 M8: 19 M29: 28

Table 3: Top-five metrics of acc@n and wef@n for Programs replace and schedule.

In summary, our method is well-adapted to locating faults over the baselines,
according to the results. The method is also dependent to the training since
better values are reached with more of faulty versions and test cases.

Statistical Analysis. Statistical tests were carried out using the Wilcoxon
Rank Sum Test to assess statistically significant differences, and Vargha and
Delaney’s Â12 statistic for effect size comparison. The tests were performed
comparing 30 runs for each program’s deployment sets. The Wilcoxon test in-
dicates that the differences between GP and GA have statistical significance at
the 95% level in all but five deployment sets of the different programs. Overall
significant statistical differences between GP and GA have been observed across
all programs with GP’s results significantly superior in programs printtokens2,
replace, tcas and tot info (all programs for which GP had better results in pro-
portion of inspected lines to locate all faults). Also, GP had superior statistically
significant differences in P1, which it lost to GA in average values.

Threats to Validity. We mitigated threats to internal validity, i.e. reduc-
ing results by chance, by using: baselines and evaluation measures used in prior
studies; 30 executions to reduce the algorithm’s stochastic-nature; and public
open source frameworks used in a variety of applications. To deal with exter-
nal validity, i.e. whether the results can be generalised, a benchmark used in
many contexts related to software engineering was applied. Finally, to cope with
threats to construct validity, how well the measurements are actually correlated
to what they claim to do, measures are used similarly to previous studies.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

695

6 Conclusion

We apply an evolutionary meta-heuristic – Genetic Programming (GP) – to
derive non-linear equations which represent suspiciousness measures of potential
faulty code elements. The work uses a program-oriented approach aiming to
find better-adapted formulae for fault localisation problems.

Well-known fault-localisation measures were used as baselines, and one meta-
heuristic method (a Genetic Algorithm) which derives linear equations. Despite
the evolutionary perspective of the latter, its results are poor due to its limited
search space. According to our results, the GP-based method allows for complex
formula and better adaptation to a set of programs: the project-based training
results in formulae customised to the potential fault set of a particular program.

As further work, the performance and adaptability on larger programs with
real faults, different types of bugs and multi-fault programs will be investigated.

References

[1] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to
assist fault localization. In Proceedings of the 24th International Conference on Software
Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002. ACM.

[2] I Vessey. Expertise in debugging computer programs: An analysis of the content of verbal
protocols. IEEE Trans. Syst. Man Cybern., 16(5):621–637, September 1986.

[3] B. Hailpern and P. Santhanam. Software debugging, testing, and verification. IBM
Systems Journal, 41(1):4–12, 2002.

[4] Lucia, D. Lo, Lingxiao Jiang, and A. Budi. Comprehensive evaluation of association
measures for fault localization. In 2010 IEEE International Conference on Software
Maintenance, pages 1–10, Timisoara, Romania, Sept 2010. IEEE Computer Society.

[5] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. A practical
evaluation of spectrum-based fault localization. J. Syst. Softw., 82(11), November 2009.

[6] Shaowei Wang, David Lo, Lingxiao Jiang, Lucia, and Hoong Chuin Lau. Search-based
fault localization. In Proceedings of the 2011 26th International Conference on Automated
Software Engineering, ASE ’11, Washington, DC, USA, 2011. IEEE Computer Society.

[7] Diogo de Freitas, Plinio Leitao-Junior, Celso Camilo-Junior, Altino Dantas, and Rachel
Harrison. Genetic programming-based composition of fault localization heuristics. In
CBSoft 2017 - WESB, Fortaleza, CE, Brazil, Sept 2017.

[8] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault
localization. IEEE Transactions on Software Engineering, 42(8):707–740, Aug 2016.

[9] James A. Jones, Mary Jean Harrold, and John T. Stasko. Visualization for fault localiza-
tion. In in Proceedings of ICSE 2001 Workshop on Software Visualization, pages 71–75,
Toronto, ON, Canada, 2001. ICSE International Conference on Software Engineering.

[10] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of similarity
coefficients for software fault localization. In Proceedings of the 12th Pacific Rim Inter-
national Symposium on Dependable Computing, Washington, DC, USA, 2006. IEEE.

[11] Shin Yoo. Evolving human competitive spectra-based fault localisation techniques. In
Search Based Software Engineering, volume 7515 of Lecture Notes in Computer Science,
pages 244–258. Springer Berlin Heidelberg, 2012.

[12] X. Xie, Fei-Ching Kuo, Tsong Yueh Chen, Shin Yoo, and Mark Harman. Provably optimal
and human-competitive results in sbse for spectrum based fault localisation. In Search
Based Software Engineering, volume 8084 of Lecture Notes in Computer Science, pages
224–238. Springer Berlin Heidelberg, 2013.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

696

