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Abstract. Achieving the targeted production volume during the ramp-
up phase plays an important role for the economic success of manufactur-
ing companies. But ramp-up phases are usually characterized by a high
degree of uncertainty, as many situations arise for the first time. These
unexpected events lead to errors and faults in automated processes which
cause losses in the overall production volume. This paper proposes an
architecture for assembly systems to predict and avoid faults of the assem-
bly process during ramp-up through self-learning. Different algorithms
for self-learning components are evaluated. By using real production data
sets, neural networks could be identified as the best solution.

1 Introduction

Due to continuously shortening product lifecycles, the cost and duration of the
production ramp-up phase are becoming increasingly important for the economic
success of a manufacturing company [1]. Shorter product lifecycles reduce the
time available for amortisation of required investments and the costs for devel-
opment. Lost profits are in addition a result of any delay in the achievement of
the targeted production volume. Faster and more robust ramp-ups are there-
fore needed [2]. The ramp-up phase is thereby defined as the period of time
between the end of development and the achievement of full capacity utilisation
of the production system [3]. In the ramp-up phase, many situations arise for
the first time and the system behaviour underlies a high degree of uncertainty
[4]. Particularly in automation this can cause interruptions of the ramp-up and
make adoptions of the system necessary [5]. The performance of a production
ramp-up can be evaluated by the “magic triangle” consisting of quality, time
and cost [6]. Fleischer [7] has shown that the goals in quality seem to be most
important and that the produced quality has a direct impact on the other two
dimensions. This means that the ramp-up targets concerning time and cost
can be described as a function depending on the achieved quality. As a result,
the overall ramp-up can only be successful if the targeted production quality
can be achieved quickly and steadily. Several studies have proven that less than
44% of the evaluated production ramp-ups have successfully achieved their given
ramp-up targets [8, 9]. A possible explanation for this is given by Wiendahl [10]
in the exposure of the production system to internal and external disturbance
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factors, which cannot be avoided or controlled. As a result, self-learning pro-
duction systems need to be developed that can easily adapt to the unknown
disturbance factors within the ramp-up phase, avoid potential faults and assure
a quick and steady achievement of the targeted production quality. In this pa-
per, we propose a possible architecture for self-learning assembly systems, which
improves and stabilizes assembly quality and thereby speeds up ramp-ups using
findings in the field of machine learning. Afterwards, different implementations
of the fault-predicting self-learning component are evaluated and compared with
respect to their performance in an existing real-world scenario.

1.1 Description of the real-world assembly scenario

In the automotive industry, most of the manufacturing processes are already
highly automated [11]. Nevertheless, particularly the automotive assembly has
remained an area still dominated by manual labour, offering a high potential
for automation [12]. Recent developments in robotics have revealed a new and
sensitive generation of robots [13]. Their sensitive capabilities allow for deploy-
ment within a wider range of assembly tasks [14], which will lead to a significant
increase of automation in the automotive assembly in the future [13], making ro-
bust and fast ramp-ups of automated assembly processes even more important.
In the chosen scenario a sensitive robot is used for the assembly of rubber plugs,
a part that is needed for sound and moisture insulation and that requires a force
controlled assembly process. The resulting assembly quality can take two states:
“OK” if the plug is fully and correctly fitted, or “not-OK” if the plug is not or
only partially fitted. Figure 1 shows the distribution of unsuccessful (not-OK)
plug assemblies over time when the technology was first introduced into a real
production line in 2016. The absolute number of plugs to be assembled every
day was kept constant over time at 15.000 a day.
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Fig. 1: Error rate of plug assembly throughout the first ramp-up.

It can be observed that between day 81 and day 110 of the ramp-up the quality
of the assembly process decreased, without any changes made to the internal
parameters. Several external disturbance factors that could not be avoided for
the developed plug-assembly process were identified by expert interviews, such
as changes in the environmental temperature, changes in the hardness of the plug
over its temperature and different production batches, mechanical tolerances and
others.
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2 Proposed architecture of self -learning assembly systems

The architecture proposed follows the intuition of deviating from a given as-
sembly policy only in the likelihood of an unsuccessful assembly. It will take
proactive countermeasures whenever the first self-learning component predicts
an unsuccessful assembly, based on changes of the monitored external parame-
ters, with a certain high probability. Therefore, the system requires the follow-
ing characteristics: awareness, prediction, decision-making and learning. The
proposed strategy aims at imitating a practical human approach in industrial
practise instead of continuously optimizing the process parameters. This allows
for better illustration of the decision process to human operators compared to a
mere black box approach, thereby enhancing process understanding.
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Fig. 2: Architecture of self-improving assembly systems.

Figure 2 shows the architecture of the system. By means of a second self-
learning component, the system chooses out of a set of given countermeasures,
the one that is most likely to prevent the expected unsuccessful assembly. The
implementation of a frequent feedback of the assembly result will allow for self-
learning and self-improvement in the performance of the assembly system over
time.
Using the architecture’s separability, we evaluate potential algorithms for the
fault predicting component. Fault prediction has often been addressed as a clas-
sification problem in past research, being given its similarity to fault detection
[15]. Gertler [16] distinguishes between model-based and model-free methods for
fault detection systems: Model-based methods compare actual sensor data with
computations from mathematical plant models. Thereby imposed requirements
towards high plant modelling accuracy can hardly be met in ramp-up phases,
since novel automated assembly processes are characterized by complexity and
uncertainty. Model-free methods do not require a mathematical plant model;
generally, they are not restricted by explicitly modelled a-priori knowledge [17].
In this setting, data-driven methods, as a subset of model-free methods are of in-
terest as required process-related causalities can often be extracted from process
data [18]. For the fault predicting component, support vector machines (SVM)
and artificial neural networks (ANN), in particular multi-layer perceptron (MLP)
and learning vector quantization (LVQ) have been identified as suitable learning
models as justified in the following: MLPs are widely used for various classifi-
cation problems. Their advantages include scalability and capability to classify
non-linearly separable data to very high accuracy and sequential learning; yet,
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performance strongly depends on the quality and quantity of data, the archi-
tecture (layers, activation function) and the training procedure [19]. LVQ is a
nonlinear classifier with a competitive layer to directly classify the input into
subclasses while a subsequent linear layer classifies into the target classes [20].
Advantages include the representation of interpretable prototypes, adjustability
of model complexity, ease of implementation, less required computation power,
and the capability for active learning [21, 22]. Generalized Learning Vector
Quantization (GLVQ) extends the concept of LVQ by minimizing a cost func-
tion of error E on an set of input vectors v ∈ V and prototypes w ∈ W with a
classifier function µW

d and transfer function f ,

E =
1

2

∑
v∈V

f(µW
d (v)) with µW

d (v) =
d+(v)− d−(v)

d+(v) + d−(v)
and often sigmoid f , (1)

with d+(v) = d(v, w+) and d−(v) = d(v, w−), the dissimilarity (e.g. euclidean
metric) between w+, the most similar prototype within the class and the input
v and respectively w−, the most similar prototype of other classes. GLVQ is a
maximum hypothesis margin classifier, in contrast, SVM is a maximum sepa-
ration margin classifier [22]. The soft-margin SVM is a popular decision model
that usually is defined by

min

(
C

N∑
n=1

ξn +
1

2
‖w‖2

)
s.t. yi(w · xi + b) ≥ 1− ξn (2)

whereas ξn penalizes misclassified points and C balances between margin and
penalty. SVMs exhibit good robustness, sparsity, generally low computational
complexity, good generalization behaviour with a small number of samples; fur-
thermore, sufficient choice of a kernel function enables fitting non-linearly sepa-
rable data, and incremental learning SVM methods are available [23, 24].

3 Evaluation

To train and evaluate the capabilities of the identified self-learning algorithms
for fault prediction we used a real production data set consisting of 2000 sam-
ples1, which was splitted (70:30) in a training and validation set . Each sample
consists of sensory (plug hardness, plug temperature, hole type, room tempera-
ture, humidity, luminosity) and visual data (360X360 pixel picture of the plug in
pre-assembly position), covering the external parameters which were identified
by experts. Using the best achieved parameter set for each algorithm, we com-
pared the prediction accuracy of the identified algorithms. Figure 3 shows that
for all algorithms a best result was derived. While both evaluated MLPs contain
two hidden fully-connected RELU layers2, we additionally used three convolu-
tion layers3 to preprocess data when working with visual input. Training, using
an Adam optimizer, was stopped if the validation error increased in five succes-
sive epochs, weights were saved at last decreasing epoch. Among the two SVM
classification types, a C-type4 with an linear activation showed the best results.
As the results of LVQ1 and GLVQ were very similar and both do not offer an

1 ”OK”:”not OK” = 57:43 2 200 neurons wide 3 32 filters, 5x5 kernel, max-pooling
4 C=10
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promising alternative to SVMs and MLPs, they were generalized into one graph
and details on implementation will be skipped. Evaluations shown in Table 1
were carried out after training, using the validation data set. The results show
that MLPs performed best with an overall accuracy of 77%. The F2 score was
identified best for evaluation, as the miss of a not-OK should be rated worse than
a wrong prediction in the case of an OK. Figure 3 also shows that prototype
based algorithms do not seem to operate well for this application. The applied
nearest neighbour method leads to a high amount of wrongly predicted OKs,
resulting in a very low sensitivity. This can be explained by the small amount
of possible prototypes in the required case of a binary classification, which also
leads to the observed decline in sensitivity when visual data is added. Neither
NN nor SVM suffer from this problem and seem both to deliver good results.
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(c) SVMs

Training SET Sensory +/- 2*STDEV
Validation SET Sensory +/- 2*STDEV
Training SET Sensory+Visual +/- 2*STDEV
Validation SET Sensory+Visual +/- 2*STDEV

Specificity Sensitivity PPV NPV Accuracy F2 Score
MLP Sensory+Visual 0.79 0.75 0.75 0.79 0.77 0.75

MLP Sensory 0.80 0.60 0.71 0.70 0.71 0.62
LVQ1 Sensory+Visual 0.99 0.01 0.60 0.55 0.50 0.01

LVQ1 Sensory 0.92 0.38 0.80 0.64 0.68 0.43
GLVQ Sensory+Visual 0.92 0.22 0.69 0.58 0.60 0.25

GLVQ Sensory 0.84 0.53 0.73 0.68 0.70 0.56
SVM Sensory+Visual 0.78 0.72 0.73 0.77 0.75 0.72

SVM Sensory 0.81 0.53 0.70 0.68 0.69 0.56

(d) Table 1: Evaluation based on confusion matrix

Fig. 3: Learning Curves and Evaluation Table of different self-learning algorithms

MLPs slightly outperform SVMs through their ability to better handle complex
data with a lot of noise. SVMs achieve good results when data complexity and
available data is low and might be a good solution in such a case.

4 Conclusion

In this paper, we presented an architecture for self-learning assembly systems
during ramp-up. We were able to show that existing self-learning algorithms
can successfully be implemented for fault prediction of an existing assembly sys-
tem in the automotive industry. We could also illustrate that the application of
model-free methods allow for a significant reduction of the rate of unexpected
not-OK assemblies by achieving a prediction accuracy of 77%, allowing a sig-
nificant improvement of assembly systems during ramp-up. In a next step, the
second self-learning component for the evaluation and execution of countermea-
sures needs to be investigated. For the purpose of consistency in the system
architecture MLPs could be applied again as they have proven to be a good
solution, but also reinforcement learning appears to be a promising method and
will be evaluated in future research.
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