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Abstract. In this work we revisit FISTA algorithm for Lasso showing

that recent acceleration techniques may greatly improve its basic version,

resulting in a much more competitive procedure. We study the contribu-

tion of the different improvement strategies, showing experimentally that

the final version becomes much faster than the standard one.

1 Introduction

The growing popularity of Big Data and the corresponding increasingly larger
problems in Machine Learning have led to a significant focus on sparse linear
models such as Lasso [1]. For centered data Lasso can be written as

min
β∈Rd

f(β) =
1

2N
‖Xβ − y‖

2
2 + λ ‖β‖1 , (1)

with X ∈ R
N×d the data matrix, y ∈ R

N the target vector, β ∈ R
d the Lasso

coefficients and the subscripts 1 and 2 denote the ℓ1 and ℓ2 norms respectively.
There are two major approaches to solve Lasso. The first one is cyclic coordi-
nate descent as implemented in the GLMNet algorithm [2], which is currently
considered as the state-of-the-art. While GLMNet deals with a coefficient βi

at a time, its alternative, FISTA algorithm [3], goes in some sense to the other
extreme, updating all the d components of β at each step by combining proximal
gradient descent with Nesterov’s accelerations.

Although it can be seen as a more general optimization algorithm, FISTA is
not currently considered as competitive for Lasso. In contrast with the cheap
and exact single coordinate iterations of GLMNet, two possible drawbacks of the
full coordinate FISTA iterations stand out. The first one is their non-monotonic
nature, due to an overshooting in Nesterov’s momentum term [4] which results
in a characteristic rippling behaviour for the objective function f . The other is
the difficulty of computing sharp enough values of f ’s Lipschitz constant, as the
standard backtracking strategy often results in too conservative, large estimates
and, hence, in shorter, less effective gradient steps.
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A simple solution for the rippling behaviour is to restart Nesterov’s momen-
tum coefficient sequence when non-monotonicity is observed [4]. More generally,
in a recent contribution Ito et al. [5] have put together a set of accelerations
for FISTA in classification problems that address both drawbacks and suggest it
may be worthwhile to revisit it as a more competitive algorithm for Lasso and
other composite problems. This is the goal of this work, in which we adapt Ito’s
techniques to regression; our main contributions are:

• A grouping of the strategies in [5] as two main increasing algorithmic im-
provements over FISTA plus backtracking, dealing first with Nesterov’s
momentum and, second, improving the Lipschitz constant estimation in
backtracking.

• The detailed study of the contribution of each acceleration strategy and
their effects over an entire regularization path instead of the single λ exe-
cutions in [5].

While we will only measure the number of iterations needed, the final improved
version of FISTA is clearly more efficient, suggesting it to be worthwhile a further
study of ways of increasing its competitiveness. The remaining of the paper is
organized as follows. In Section 2 we briefly review FISTA and describe the
acceleration strategies we consider. We present our experimental comparison in
Section 3 and in Section 4 we offer other insights and pointers to further work.

2 FISTA and its Acceleration

2.1 Basic FISTA

FISTA (which stands for Fast Iterative Soft-Thresholding Algorithm) is an itera-
tive algorithm based on the application of proximal operators to solve composite
problems. For least squares it combines the basic iterations of ISTA [3]

βk = S 1

L

(wk −
1

L
((XTX + µI)wk −XTy)), (2)

where Sγ(z) = sign(z)(|z| − γ)+ and L is an estimate for the Lipschitz constant
of the problem, with a Nesterov step:

wk+1 = βk +
tk − 1

tk+1
(βk − βk−1), tk+1 =

1

2

(

1 +
√

1 + 4t2k

)

,

which adds a momentum term defined by the increasing tk sequence. FISTA
constitutes a generic algorithm with guaranteed convergence to the global min-
imum and that can be used in many problems, Lasso among the best known.
For more details refer to the original paper [3].

Nonetheless, while FISTA’s generic implementation may be an advantage
over other problem-specific methods, it is not currently regarded as a state-of-
the-art method to solve Lasso. One reason is the non-monotonicity caused by
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Nesterov’s step. In fact, since the momentum terms grows per iteration, we may
reach a point where we exceed its optimal value, getting a rippling behaviour that
severely impacts performance. Another reason is its gradient step size, which
may be too small sometimes. There have been several recent contributions that
try to avoid these effects and suggest to reconsider FISTA as an efficient option
for Lasso. In particular, Ito et al. [5], building on the work in [3, 4, 6], propose a
new algorithm named Fast Accelerated Proximal Gradient which puts together
several acceleration strategies to address the previous FISTA drawbacks. We
briefly describe these strategies next.

2.2 Bactracking

As Beck and Teboulle already explained in their paper [3], in many cases we
do not know the exact value of the Lipschitz constant of a problem and thus
we are forced to estimate a suitable one Lk at each step. The backtracking
strategy does precisely this, improving on the global Lipschitz constant L, which
generally is too conservative, and yielding better estimates Lk that allows us
to achieve a faster convergence. Backtracking guarantees the sequence Lk to
be non-decreasing, something needed to fulfil the conditions required for the
improved convergence analysis in [3].

2.3 Restarting and Maintaining Top Speed

A natural idea to avoid the rippling behaviour of FISTA is proposed in [4]
by O’Donoghue and Candes. It consists in restarting Nesterov’s momentum
whenever a non-monotone step is detected in the f(βk) sequence. This non-
monotonicity is likely to have been caused by an overshooting of momentum at
that step, driving the algorithm out of the optimal direction. To this strategy,
Ito et al. add in [5] a heuristic, named maintaining top-speed, which avoids
restarting the momentum term near the optimum so that its speed up advantage
is not lost.

2.4 Decreasing and Stability for Lk

While the convergence proofs in [3] require non-decreasing Lk values, it would
also be advantageous for them to be smaller so that we have larger gradient
steps whenever possible. In [6] a modification of the original FISTA method is
proposed to allow Lk to decrease by diminishing at each iteration the starting L
value for backtracking as ρkLk−1 for some ρk < 1. This requires to recompute
wk (and the corresponding gradient) and also to adjust the tk at each step so
that they still verify tk/Lk ≥ tk+1(tk+1 − 1)/Lk+1, ∀k ≥ 1, which is enough for
the faster convergence proofs. In [5] the authors also add a practical correction,
called stability, which progressively augments the decreasing factor as a trade-off
between the decreasing and the backtracking strategies.
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Table 1: Dataset sizes and dimensions.

Dataset Num. Patterns Dimensions

year 46 215 90
ctscan 53 500 385
(duke) breast cancer 44 7129
cpusmall 6143 12
leukemia 72 7129
ree 5698 15 960

3 Experiments

We will compare the different strategies above on the 6 regression and binary
classification datasets of Table 1. All of them except the ree dataset come from
the LIBSVM repository; we deal with the classification datasets as regression
problems with targets the class labels {−1, 1}. The goal for the ree dataset is
to predict wind energy production (kindly provided by Red Eléctrica de España)
from numerical weather predictions. Most of the datasets have quite large di-
mensions, whereas the number of patterns varies from small ones (leukemia and
breast cancer, which have very large dimensions) to large problems.

We will consider four approaches: starting with standard FISTA and its
backtracking extension (FISTAB), we then group the acceleration techniques
of Section 2 into two procedures, FISTABR, which adds to FISTAB Nesterov
restarting plus maintaining top speed, and FISTABRD, that adds decreasing
and stability to the estimation of the Lipschitz constant. The comparison will be
done over values of the regularization parameter λ in an equispaced logarithmic
path from 105 (where all model coefficients will essentially be zero) to 10−7

(i.e., essentially no regularization takes place). In order to compare the different
methods we first compute for each λ a global optimum value f⋆ by running the
four methods for 50 000 iterations and then retaining the smallest objective value
among the four resulting optima. We then compute for each method and each λ
value the number M of iterations needed so that the corresponding f(βM ) value

verify f(βM)−f⋆

f⋆ ≤ 10−6 (with a limit of 50 000 iterations), and then add for each
method these M values over the entire λ path.

Table 2 shows the results, both as total number of iterations and as ratio
to the smallest such number. Moreover, Figure 1 depicts the number of itera-
tions for the different λ values. As we can see in both the table and the figure,
FISTABRD requires the fewest iterations for all problems but ctscan, where
FISTAB is better for the smallest λ values and quite close for the rest. For the
other datasets, FISTABRD is the best across all λ values, particularly, for the
optimal regularization parameter obtained by 10-fold cross-validation (vertical
dashed line in the plot). Notice that the restarting strategy is not always helpful
on its own, since it focuses on avoiding non-monotonicity which, while sensible,
is not guaranteed to result in less iterations. On the other hand, the larger step
sizes provided by the decreasing strategy clearly help to achieve faster conver-
gence. It seems that the accelerations have larger effects when d ≫ N (the case
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Table 2: Iteration results for all the methods and datasets.

Dataset
FISTA FISTAB FISTABR FISTABRD

Total Ratio Total Ratio Total Ratio Total Ratio

year 1546 2.55 1104 1.82 779 1.28 607 1.0
ctscan 9638 1.22 7895 1.0 12 360 1.57 11 110 1.41
breast cancer 275 976 1.42 271 750 1.40 283 405 1.46 194 301 1.0
cpusmall 371 1.78 295 1.41 296 1.42 209 1.0
leukemia 189 767 1.40 184 947 1.36 199 686 1.47 135 772 1.0
ree 280 718 1.23 273 319 1.20 265 643 1.17 227 737 1.0

Ranking 3.38 2.46 2.92 1.25

of leukemia, breast cancer and, to a smaller degree, ree). Also, it appears
that the optimal λ somehow balances the problem, so for larger values the algo-
rithms focus on the much easier problem of minimizing the regularization term
and, hence, there is less scope for the accelerations to be effective.

4 Discussion and Further Work

Due mainly to its non-monotone behaviour, FISTA is not currently regarded as
a state-of-the-art method for solving the Lasso problem. In this paper we have
studied the impact of some recent acceleration strategies on the performance
of FISTA for regression tasks that can make it much more competitive. Our
results lead us to the following conclusions. First, when considering the full
regularization path for Lasso there is in most cases a significant benefit from
the accelerations studied. Second, there is also a clear advantage when consid-
ering only the optimal λ parameter, which is important for production models.
Third, a greater gain is obtained for high-dimensional problems, whereas for
problems where the number of patterns is much bigger than the dimension the
benefits may be not so marked. Finally, as expected the greatest gains are ob-
served for the smallest values of λ, i.e., when the optimization problem is harder.
This is clearly the case of year, ctscan and cpusmall, and also of leukemia,
breast cancer and ree (although in these cases we have limited the maximum
number of iterations to 50 000).

There are several possible lines for further work along the previous ideas:
(i) to take into account the extra costs (function and gradient evaluations) gen-
erated by the decreasing strategy, (ii) to consider the effects of the strategies
above when warm starts are used while exploring the regularization path, (iii) to
compare the iteration performance of FISTA against GLMNet and other com-
petitors and, if still competitive, (iv) to compare the execution times over all the
different scenarios to have a better measure of the acceleration effects.
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