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Abstract. Large margin nearest neighbor (LMNN) is a metric learner
which optimizes the performance of the popular kNN classifier. However,
its resulting metric relies on pre-selected target neighbors. In this paper,
we address the feasibility of LMNN’s optimization constraints regarding
these target points, and introduce a mathematical measure to evaluate the
size of the feasible region of the optimization problem. We enhance the
optimization framework of LMNN by a weighting scheme which prefers
data triplets which yield a larger feasible region. This increases the chances
to obtain a good metric as the solution of LMNN’s problem. We evaluate
the performance of the resulting feasibility-based LMNN algorithm using
synthetic and real datasets. The empirical results show an improved
accuracy for different types of datasets in comparison to regular LMNN.

1 Introduction

Metric learning is the idea of finding an efficient metric for a given dataset to
provide a more discriminant representation and consequently having a better
classification performance. In basic terms, it tries to compact points of the same
class while increasing the distance between different classes [1]. A well-known
metric learning approach is the Large Margin Nearest Neighbor algorithm (LMNN)
[2] which transfers the maximum margin concept of SVM [3] to the k-nearest
neighbor (kNN) framework [4]. LMNN has been used in many real problems
such as face recognition [5], motion classification [6] and person identification [7].
Several improvements have been suggested for the original LMNN approach such
as complexity reduction of its optimization [8], eigenvalue based optimization
[9], multi-tasking extension [10] and hierarchical prepossessing of input data
[11]. One challenge of LMNN is the efficient selection of neighboring targets
in its optimization framework [2]. As a common strategy, these target points
are selected as nearest neighbors from the same class based on the Euclidean
distance. In multiple-pass LMNN, the neighborhood is recomputed based on the
found distance measure to improve the classification result [2, 12].

In this paper we focus on the relation between selected neighboring targets
and the feasible set of LMNN’s optimization problem. We show that wrong
choices of targets can severely shrink the regime of feasible solutions of the
optimization problem. We introduce a feasibility measure which quantifies the
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impact of neighboring points with respect to the size of the feasible set, and we
use this measure as a weighting scheme in a modified version of LMNN.
Road map: In section 2 we shortly review the original LMNN framework, and
afterwards we study the concept of infeasible target neighbors. In section 4
we introduce a measure to evaluate the size of target’s feasible regions, and we
introduce feasibility-based LMNN in section 5. We implement our algorithm on
synthetic and real datasets in section 6, and eventually the conclusion will be
made in the last section.

2 Large Margin Nearest Neighbor Algorithm

Consider the training set {(~xi, yi)}ni=1 with data vectors ~xi ∈ Rd and their
corresponding labels yi ∈ {1, . . . , C}. LMNN tries to find a Mahalanobis metric
of the form DM(~xi, ~xj) = (~xi−~xj)>M(~xi−~xj) where M is a positive semidefinite
(psd) matrix. Its objective is to achieve compact neighboring data samples with
the same label (targets) and far away neighboring points with different labels
(impostors). Define N k

i as the set of points within the k-nearest neighbors of
~xi which have the same class and Iki as the set of points within the k-nearest
neighbors of ~xi which have a different class. LMNN optimizes the following
problem:

min
M

(1− µ)
∑

i

∑
j∈Nk

i
DM(~xi, ~xj) + µ

∑
i

∑
j∈Nk

i

∑
l∈Iki

ξijl

s.t. DM(~xi, ~xl)−DM(~xi, ~xj) ≥ 1− ξijl
ξijl ≥ 0, M � 0 ∀i, j ∈ N k

i , l ∈ Iki
(1)

where µ ∈ (0, 1) balances the two objectives. ξijl constitute slack variables of the
constraints. Eq.1 constitutes a convex problem with respect to M if the targets
N k
i and impostors Iki are fixed [2]. Nevertheless, different selections for these

initial targets can lead to different solution M. As suggested in [2, 12] a better
strategy is to repeat LMNN’s optimization multiple times (multiple-pass LMNN)
while updating N k

i and Iki in each run based on the resulting quadratic form M.
Yet, also this strategy relies on the quality of the initial selection of these two
sets.

3 Infeasible Target Neighbors

We are interested in the question in which cases feasible solutions of the opti-
mization problem (1) exist which do not require slack variables ξijl > 0. This
feasible regime is given as

S := {M ∈ Rd×d|M � 0,DM(~xi, ~xj) < DM(~xi, ~xl) ∀i, j ∈ N k
i , l ∈ Iki } (2)

For a triplet i, j, l, the metric constraint can be re-written as:

Tr[QijlM] := Tr[((~xi − ~xj)(~xi − ~xj)> − (~xi − ~xl)(~xi − ~xl)>)M] < 0 (3)
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Since M is psd, a psd matrix Qijl leads to the infeasibility of Eqn. (3), whereby
this fact depends on the triplet i, j, l, only, and not the specific neighborhood.
In this section, we discuss an extremal case, where the constraint induced by
a triplet is infeasible, and we propose an according measure which has a clear
geometric interpretation in this extremal case. In the next section, we generalize
this measure to a suitable weighting scheme for more general settings.

A matrix Q := Qijl results from two vectors in the form ~a~a> −~b~b>, i.e. its
rank is at most 2. After matrix transformation if necessary, we can assume that
only the first two dimensions of the matrix, ~a and ~b relate to non-zero coefficients.
Denote the two possibly nonzero eigenvalues of Q as λmin(Q) ≤ λmax(Q). Note

that eigenvectors are obviously located in the span of ~a and ~b, and (after base
transformation s.t. non-zero coefficients are denoted (a1, a2) and (b1, b2)) they
have the form

λmax/min = (a2
1 + a2

2 − b21 − b22)/2±
√

(a2
1 + a2

2 − b21 − b22)2/4 + (a1b2 − b1a2)2

as one can easily infer from the characteristic polynomial of Q. Obviously,
λmin(Q) ≤ 0 < λmax(Q) (unless vectors itself are degenerate). The equal-

ity λmin(Q) = 0 corresponds to linearly dependent vectors ~a and ~b, namely
the equality a1b2 − b1a2 = 0. This setting does not allow a feasible solu-
tion without slack variables. In the following, we will argue that the measure
r := −λmin(Q)/λmax(Q) constitutes a reasonable weight vector to measure the
feasibility of the constraint corresponding to Q or the size of its feasible domain,
respectively. Obviously, r = 0 is the case just described, an infeasible setting due
to the geometry of ~a = (~xi − ~xj) and ~b = (~xi − ~xl).

4 Feasibility Measure

We start with a general observation:

Lemma 1. Denote the eigenvalues of a matrix Q ∈ Rd×d by λ1(Q) ≥ λ2(Q) ≥
. . .. The smallest/largest eigenvalue is denoted λmin(Q) resp. λmax(Q). For
hermitian Q ∈ Rd×d and symmetric psd M ∈ Rd×d, it holds λk(Q)λmin(M) ≤
λk(QM) for all k.

Proof. M is psd and Q and M are symmetric, hence λk(QM) = λk(Q
√
M
√
M) =

λk(
√
MQ
√
M) where

√
M is the principal square root of M. Using the min-

max theorem we find λk(QM) = min
dim(F )=k

(
maxx∈F\{0}

〈Q
√
Mx,
√
Mx〉

〈
√
Mx,
√
Mx〉

〈Mx,x〉
〈x,x〉

)
≥

λmin(M) min
dim(F )=k

(
maxx∈F\{0}

〈Q
√
Mx,
√
Mx〉

〈
√
Mx,
√
Mx〉

)
because 〈Mx,x〉

〈x,x〉 ≥ λmin(M).

Again using the min-max theorem we get λk(QM) ≥ λmin(M)λk(Q).

Based on Lemma 1 we have λmax(Q)λmin(M) ≤ λmax(QM) for Q := Qijl as
specified above. In the setting λmin(Q) < 0 < λmax(Q), we can use [13](corollary
10) to infer λmin(Q)λmax(M) ≤ λmin(QM). Combining these two inequalities
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results in the inequality

λmin(Q)λmax(M) + λmax(Q)λmin(M) ≤ Tr(QM) (4)

Eq. 3 induces the objective Tr(QM) < 0, hence the left hand side of Eq. 4 should

be negative, i.e. − λmin(Q)
λmax(Q) >

λmin(M)
λmax(M) . Hence a triplet i, j, l with a small value

r = − λmin(Q)
λmax(Q) imposes a tight constraint on the eigenvalue formation of M, hence

we expect an induced small feasible set Sijl. Note that the feasible domain S
results as intersection of the feasible sets Sijl. We include this observation and
the according measure r = rijl into the optimization framework in the form of
an according weighting.

5 Feasibility Based LMNN

For a vector ~xi and a given target ~xj ∈ N k
i we define Rij := min

~xl∈Iki
(rijl). We formu-

late feasibility-based LMNN as the following LMNN problem which incorporates
according weights of the objective:

min
M

(1− µ)
∑
i

∑
j∈Nk

i
RijDM(~xi, ~xj) + µ

∑
i

∑
j∈Nk

i
Rij

∑
l∈Iki

ξijl

s.t. DM(~xi, ~xl)−DM(~xi, ~xj) ≥ 1− ξijl
ξijl ≥ 0, M � 0, ∀i, j ∈ N k

i , l ∈ Iki
(5)

Unlike original LMNN, infeasible or challenging triplets carry less weighting
in this formulation. We dub the resulting method FB-LMNN. FB-LMNN is
implemented by first determining the neighborhood, computing corresponding
weights Rij , and then solving the convex optimization problem w.r.t. matrix
M. In addition, a multiple passes strategy can be used to increase the resulting
accuracy [2].

6 Experiments

We evaluate our algorithm on both synthetic and real data, and compare it with
kNN, single-path LMNN (SP-LMNN), multiple passes LMNN (MP-LMNN)[2]
and multi-class SVM [3]. For LMNN we use a neighborhood size k = 5 and
weighting µ = 0.5. Evaluation is done in a 10-fold cross validation. SVM uses
the respective best result obtained with a linear, RBF-, or polynomial kernel.

6.1 Synthetic Data

The synthetic dataset is a variation of the 2D zebra stripe data from [2] in
which two classes of data alternate (Fig.1-left). In contrast to [2], the nearest
targets to each data point ~xi are located on the same stripe. On each stripe,
the impostors and targets are almost placed on a straight line, resulting in very
tight or infeasible constraints of the optimization framework. Even multiple-pass
LMNN (Fig.1-middle) does hardly change this selection of impostors and targets.
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Fig. 1: Zebra dataset (left), MP-LMNN (middle) and FB-LMNN (right)

Consequently multiple-pass LMNN converges to a non-optimal solution M with
classification accuracy of 23.51% (almost the same as kNN’s).

On the other hand, FB-LMNN assigns small Rij weights to pairs within the
same stripe while bigger weights to pairs in neighbored stripes. Therefore it
obtains a different matrix M which results in a different scaling of the space
(Fig.1-right), and a classification accuracy of 72.21%.

6.2 Real Datasets

Real datasets are mostly taken from the UCI repository library1; in addition, we
consider the extended Yale face dataset2 and the MNIST handwritten digits3,
which constitute benchmarks in this domain. The selected datasets cover different
application areas and types of the data set. For the Yale face, MNIST, and
isolet datasets we follow the procedure proposed in [2] as regards preprocessing
by means of dimensionality reduction and the cross-validation procedure for
evaluation.

Results are shown in Table 1. FB-LMNN significantly surpasses MP-LMNN
in some cases, demonstrating the effectivity of the proposed feasibility measure
R. For a few data sets, such as the Yale dataset, no significant difference is
observed. Interestingly, results as obtained by SVM are mostly on par, but in
some cases worse as compared to FB-LMNN, whereby SVM restricts to the
standard Euclidean metric. It would be an interesting endeavor to test the effect
of the metric learned by FB–LMNN on the result of SVM.

7 Conclusion

In this paper we studied the role of target neighbors N k
i on the feasibility of

the constraints in LMNN’s optimization problem. We proposed a quantitative
measure for the degree of feasibility of triplets of a target and impostor for a
data point, and we demonstrated that this measure constitutes an efficient and
effective weighting scheme to be integrated into LMNN’s optimization. The

1https://archive.ics.uci.edu/ml/datasets.html
2http://vision.ucsd.edu/ iskwak/ExtYaleDatabase/ExtYaleB.html
3http://yann.lecun.com/exdb/mnist/

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6. 
Available from http://www.i6doc.com/en/.  

223



Table 1: Classification accuracy(%) and datasets’ characteristics.

dataset class dimension kNN sp-lmnn mp-lmnn fb-lmnn SVM
Zebra 2 2 21.31 22.41 23.51 72.21 50.82
Wine 3 13 76.20 92.84 93.91 98.77 78.23

Balance 3 4 83.42 88.45 94.03 96.08 97.5
B. Cancer 20 30 94.66 94.88 96.68 97.07 78.49
Car Eval. 4 6 92.57 95.12 98.32 98.4 60.08

Tic-Tac-Toe 2 9 87.42 91.46 97.66 98.13 85
Hepatitis 2 17 84.16 84.46 84.46 90 79.11

iris 3 4 94.93 95.02 95.61 96.05 96.13
isolet 26 172 91.02 95.64 95.70 96.85 96.60
YFace 38 300 89.21 94.10 94.48 94.48 84.78

MNIST 10 164 97.57 98.28 98.31 98.92 98.80

results of several experiments clearly demonstrate the effect of the proposed
technology.
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