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Abstract. One approach to interpreting multidimensional scaling (MDS)
embeddings is to estimate a linear relationship between the MDS dimen-
sions and a set of external features. However, because MDS only preserves
distances between instances, the MDS embedding is invariant to rotation.
As a result, the weights characterizing this linear relationship are arbitrary
and difficult to interpret. This paper proposes a procedure for selecting
the most pertinent rotation for interpreting a 2D MDS embedding.

1 Introduction

In many applications, the usability of machine learning techniques depends on
their interpretability [1]. This paper deals with the problem of understanding, or
interpreting, a multidimensional scaling (MDS) embedding using features that
were not used to compute the MDS (i.e. “external” features). This is a kind
of multi-view learning task based on data from multiple sources [2]. The goal
here is to characterize the relationship between two views: one taking the form
of (dis-)similarities between instances and the other expressing features of these
instances.

For example, in psychology, two independent experiments are sometimes run
where one is used to interpret the result of the other. This is the case for
implicit measure studies, which aim to understand human decisions encoded
in one database by using another database. A first database is composed of
similarity ratings for a set of instances, whereas the second database contains
characterizations of the same instances with respect to a set of features. The
research question is then: how can the feature matrix be used to explain the
comparisons in the first database? Another field of application is the medical
sciences, where clinical features can be used to interpret patient similarity with
respect to gene expression, protein abundance, etc.

This work proposes an approach that strikes a balance between interpretabil-
ity and performance: it finds an optimal rotation of an MDS embedding that can
be used to identify a small subset of features necessary for accurately explaining
that embedding. In this work, we focus on 2D MDS embeddings, constraining
the rotation to revolve around a single axis.
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2 State of the Art

The problem of interpreting an MDS representation of a set of instances is fre-
quently encountered in the social sciences (see, e.g., [3]). Let Y (n x K) be a
matrix resulting from the application of MDS to an n x n (dis-)similarity matrix.
Some authors interpret this embedding by clustering the instances in Y [4]. For
2D MDS embeddings (K = 2), another more popular approach is to regress a
set of external features f;, j : 1,..,d, onto the MDS matrix Y through property
fitting [5]: £; = Yw; + &;, where w; is a vector of weights and §; is an error
vector. A subset of features important for explaining the MDS dimensions are
identified based on some measure of model fit, such as the coefficient of deter-
mination R?. If the model for a given feature f; has a sufficiently adequate fit
with respect to some threshold, its line of fit is plotted in the MDS space. As a
result, the MDS can be interpreted based on a subset of external features.

Unfortunately, because each feature is regressed separately onto Y, potential
dependence between features is ignored. In order to account for all features at
once, some authors apply Principal Component Analysis (PCA) to a feature
matrix F (n x d), then regress each principal component [ onto the MDS matrix:
PCA(F); = Yw; + &, for [ : 1,...,q, where ¢ is the total number of principle
components. Extra processing steps have also been proposed in order to allow
the PCA components to be non-orthogonal (see [3] for an applied example).

While the weights for each dimension of PCA(F') are still estimated indepen-
dently of each other, this method has the advantage of accounting for dependence
between features: each component regressed onto Y is a linear combination of
features. However, the PCA components of F are estimated independently of
the MDS embedding Y. This means that the PCA components are not optimal,
in terms of precision, for a regression onto the MDS space. In addition, the so-
lution does not necessarily improve model interpretability, as a single principle
component [ could depend on all of the features in F'.

3 Proposed Approach

As seen in Section 2, there is a need for a method that identifies a small subset
of features that best explain two MDS dimensions y; and ys while accounting
for dependence between features f;. In order to allow features to jointly explain
the MDS dimensions, we propose performing a linear regression where the MDS
dimensions y; and y, are response variables, rather than predictors, and thus
the predictors are the features in F. This section presents our motivation and
goals, as well as our proposed approach, which is then evaluated in Section 4.

3.1 Motivation and Goals

Let the multivariate regression model be defined as Y = FW + E, where W
(dx2) is a matrix containing the regression weights to be estimated and Z (d x 2)
is an error matrix. Variables with non-zero weights for a given dimension of Y
are considered to be explicative of the corresponding axis in the 2D MDS space.
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Unfortunately, the orientation of the MDS embedding Y is arbitrary, mean-
ing that the weights W are also arbitrary, and thus difficult to interpret. Indeed,
Y is found by minimizing a measure of the degree to which distances between
n instances in the n x n (dis-)similarity space are preserved in the new n x 2
space. A popular measure of this kind is the Kruskal stress [6]. Minimizing this
criterion results in MDS solutions with arbitrary orientations because distances
between instances in the resulting space remain the same for any rotation.

Rather than simply regressing the arbitrarily rotated MDS solution Y onto
F, it could be more relevant to find a rotation of Y that optimizes some criterion
related to the analysis goals at hand. Let the 2D rotation matrix R? for a given

angle 6 be defined as
RY — cos(0) —sin(0)
" |sin(f)  cos(6)

The regression model of interest is thus: YR? = FW? + 2, where W is a
weight matrix that depends implicitly on the rotation angle 6.

For our particular case, we are interested in finding the rotation angle 6 that
optimizes some trade-off between interpretability and model error. We assume
that the model is most interpretable when the number of non-zero weights in
WY is minimal, i.e. the model is “sparse.”

Without considering sparsity, the ordinary least squares (OLS) solution for
6 =0 is given by WO = (FTF)"!FTY. It can be shown that the OLS solution
for any 0 is WY = (FTF)"!FTYR? = WOR?. Thus, the effect of rotating Y
is to rotate W with the same angle, and the mean squared error (MSE) of the
model, which is the sum of the MSE for y; and y», is invariant under rotation.

The OLS solution, however, does not guarantee interpretability as defined
above. In order to encourage interpretability, some model constraint must be
included so that unimportant variables are excluded from the model. A natural
constraint for this purpose is the Lo norm, which counts the number of non-zero
weights in the model. The function to minimize is

2 2
1
5 D2 I~ Fwil B+ > Aliwill, (1)
k=1 k=1

where ) is a tuning parameter that controls the trade-off between model error
and interpretability. Optimizing Eq. (1) with respect to W% is an NP-Hard
problem [7], so in practice, the L; norm is often used as an approximation [8]:

2 2

1

S Il — Fwl + S Miwil. e)
k=1 k=1

For a given 6, the solution W? is found using any Lasso implementation. How-
ever, in contrast to the OLS solution, for a given A, the model error and sparsity
of the Lasso solution depend on the rotation angle (see Section 4.3). The optimal
rotation angle 8* being unknown, it must be optimized.
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3.2 Finding the Best Rotation with the Ly Norm

The proposed procedure for finding the best interpretable rotation (BIR) pro-
vides an optimal angle #* and associated weight matrix W for which the
number of non-zero weights and the model error are minimized. In an approach
inspired by [9], the procedure finds an angle 6 whose corresponding Lasso solu-
tion W¥ minimizes Eq. (1). This procedure is formalized by

o =g Y (5 Ived — Wil Al ) )
k

where WY = Lasso(F, YRY, )\), which is found by minimizing Eq. (2). The
univariate function to minimize in Eq. (3) being non-convex, any generic solver
for non-convex optimization may be used.

4 Evaluation

This section evaluates the performance of the Lasso solution when the matrix Y
is rotated with the angle found using the BIR selection procedure. This is then
compared to (i) the average performance of angles resulting in the least sparse
Lasso solutions, as well as (ii) the estimated performance when Y is rotated
with a random angle from the set © = {0.1,0.2,...,360} degrees. The first case
demonstrates the worst case scenario and the second represents the estimated
expected performance obtained for an arbitrary MDS orientation.

4.1 Data and Pre-Processing

We evaluated the performance of the proposed BIR selection procedure on five
popular datasets: Hepatitis, Dermatology, Heart (Statlog), and Pima Indians
Diabetes from [10] and Diabetes from [11]. These datasets were chosen because
their features can be easily split into two different, meaningful data views. For
example, Hepatitis can be split into a view with basic clinical features (e.g.
age, family history, etc.) and another view with more complex histopathological
features (e.g. melanin incontinence, etc.). For each dataset, we removed all
instances with missing values. We used the view with the most complex features
to compute a dissimilarity matrix based on Euclidean distances, then applied 2D
metric MDS. We used the other view (normalized) to interpret the MDS space.

4.2 Evaluation Criteria

We evaluated the BIR procedure using two criteria. The first criterion, referred
to as s?, measures the degree of model sparsity (i.e. interpretability), and is

calculated as Zizl [[w|lo, the number of non-zero weights in W?. Prob(s?)
= ﬁ HH’ €0 | Zi:l W (|0 = se}‘ represents the approximate probability

that Lasso obtains a degree of sparsity s’ when 6 is chosen at random. The
second criterion is the overall model error MSE = - Zi:l [[Yr? — Fwi||2.
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Dataset Angle Selection \ 6 (°) \ s? \ Prob(se) \ MSEFE ‘
Hepatitis least sparse case 11 8.9% 0.169
d=15 average case 9.1 0.170
30 weights BIR procedure 59.8 | 6 2.1% 0.168
Dermatology | least sparse case 12 3.1% 0.098
d=17 average case 9.5 0.092
34 weights BIR procedure 364 | 7 12.7% 0.086
Heart least sparse case 3 71.9% 0.180
d=4 average case 2.7 0.180
8 weights BIR procedure 0.9 2 28.1% 0.180
Diabetes least sparse case 7 42.5% 0.195
d=5 average case 5.7 0.194
10 weights BIR procedure 68.2 3 10.1% 0.191
Pima least sparse case 5 8.6% 0.220
d=5 average case 3.4 0.219
10 weights BIR procedure 20.3 | 2 0.7% 0.224

Table 1: Comparison of BIR selection with the least sparse and average cases.
The total number of weights is twice the number of external features (= 2 x d).

4.3 Results

For each dataset, the results presented here correspond to (i) the least sparse
rotations, which highlights the importance of choosing an appropriate angle,
(ii) the expected value estimated by averaging the criterion values for all # in
the set ©® = {0.1,0.2,...,360} degrees, and (iii) the rotation chosen by the BIR
procedure. The relative performance of i-iii was similar for a variety of A\ values.
Experimental results for one of these values, A = 0.1, can be found in Table 1.

4.4 Discussion

For all datasets, the BIR procedure yields a solution that is 1.5-2.5 times more
sparse than the least sparse solution with a negligible computational cost (a
few seconds). Selecting a random angle results, on average, in models that
are also less sparse than for the BIR procedure, with a greater or equal error
for all but one dataset. These results suggest that using a rotation selection
procedure is advantageous for someone requiring interpretability. Furthermore,
the probability of randomly choosing a solution with the least sparsity can be
high relative to a sparser solution. For Diabetes, there is a 42.5% chance of
randomly selecting a rotation yielding 7 non-zero weights, whereas a solution
with only 3 non-zero weights can be found using the BIR procedure.

5 Conclusion

This paper demonstrates the importance of choosing a rotation angle for a 2D
MDS embedding that makes it easier to interpret. A procedure is provided for
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selecting a rotation and estimating a sparse linear regression model that finds a
compromise between interpretability and model error.

In the current procedure, an optimal rotation angle 8* is chosen by minimiz-
ing a function that depends on Lasso solutions W. In a future work, it would
be interesting to develop a more direct and simultaneous optimization of the
angle and weight matrix. Another extension would be to tackle the problem of
rotating an MDS space with more than two dimensions, which would require the
optimization of a vector 8. Moreover, a more nuanced definition of interpretabil-
ity could be used to encourage both overall sparsity and an equal distribution
of non-zero weights among the MDS dimensions.
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