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Abstract. Successful integration of multi-omics data for prediction tasks
can bring significant advantages to precision medicine and to understand-
ing molecular systems. This paper introduces a novel neural network ar-
chitecture for exploring and integrating modalities in omics datasets, es-
pecially in scenarios with a limited number of training examples available.
The proposed cross-modal neural network achieves up to 99% accuracy on
omics datasets. Moreover, we show how analysis of the weights and acti-
vations in the network can give us biological insights into understanding
which genes are most relevant for the decision process and how different
types of omics influence each other.

1 Introduction

Multi-omics data integration is paramount for medical research and subsequent
diagnoses since the preliminary signs of a disease are noticeable first in the
omics. [1]. Moreover, in developmental biology, multi-omic changes are critical
factors in the way stem cells differentiate and gain a certain functionality [2].

The Cancer Genome Atlas (TCGA) [3] consists of a comprehensive collection
of multi-omics data. However, the move from heterogeneous data produced by
genome projects to final diagnosis in medical research, requires a powerful ma-
chine learning tool capable of approximating the underlying correlated relation-
ships between different types of omics data through supervised learning. Neural
networks achieve state-of-the-art performance on many classification tasks [4]
and they are also well-suited for analysing complex multi-omics data [5]. Nev-
ertheless, due to the high costs involved in obtaining omics data, finding large
datasets in order to reliably train neural network models remains a challenge.

Therefore, we propose a cross-modal superlayered neural network architec-
ture (SNN) that is capable of extracting cross-correlations present in multi-
modal datasets, thus achieving good performance, particularly on datasets with
a limited number of training examples. A similar approach has been used by
Veličković et al. to improve the performance of neural networks on small image
datasets [6]. Modalities are inherent to multi-omics datasets which contain in-
formation from different data sources including epigenome, transcriptome and
proteome. When this is not the case, unsupervised learning can be employed to
identify implicit modalities present in the omics data, such as groups of genes
that are co-expressing under a specific condition.

The SNN achieves up to 99% accuracy on the omics datasets analysed. In
addition, through t-SNE visualizations, we show how this cross-modal method
could provide a way to study how different omics influence each other.
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2 Methods

2.1 Datasets and preprocessing

The datasets were chosen to illustrate that the superlayered architecture achieves
outstanding results on both binary and multi-class classification. Moreover, since
for prognosis or diagnosis in personal medicine there is usually a limited amount
of data available, the datasets used in this paper are representative of this fact.

Therefore, we will use a dataset from TCGA that involves binary classifica-
tion of patients for breast cancer [1]. We focused on the activity of genes in the
tumour necrosis factor receptor superfamily (TNFRS) which has been proven
to play important roles during tumorigenesis and could be the potential targets
for cancer therapy [7]. The dataset consists of 528 positive and 62 negative
training examples, where each example has 26 gene expression measurements
(transcriptomics) and 26 DNA methylation measurements (epigenomics).

The second dataset used includes transcriptomes of 90 human preimplan-
tation embryos corresponding to seven embryonic developmental stages [8]. A
training example consists of more than 20,000 gene expression levels, which re-
quires an initial pre-processing step to select up to 200 genes that have the
highest entropy across different classes. Then, k-means clustering was used to
find groups of genes that are co-expressed across the seven developmental stages
and therefore to explore the potential mechanisms underlying the transcriptome
data. The two largest gene clusters are used as input modalities to the SNN.

2.2 Cross-modal neural network

The SNN consists of two superlayers, each of which receives a data modality.
A superlayer represents a feedforward neural network that learns to analyse its
input modality. The separation into data modalities through domain-specific
knowledge (gene expression and DNA methylation) or unsupervised learning
(clustering) leverages the width of the data, which is essential for overcoming
the problem of having sparse datasets for training.

Cross-connections are added between the superlayers in order to allow the
information to flow freely between the different modalities, but also to explore
the interactions between them. The features learnt by the superlayers are even-
tually concatenated, and passed into two fully connected (FC) layers before the
output layer computes the network’s predictions. Figure 1 illustrates the SNN
architecture and the data flow through this network.

The positioning of cross-connections required careful consideration due to its
influence on feature extraction. If we do not use cross-connections and just con-
catenate the superlayers at the end, then the correlations between the modalities
would not be exploited to their full potential. Conversely, if the cross-connections
are incorporated too early, the different modalities would have excessive influence
on each other.

Therefore, in order to strike a balance, we decided to add the cross-connections
in the middle of the superlayers. This way, the data is allowed to flow freely

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6. 
Available from http://www.i6doc.com/en/.  

386



. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

First input modality

First superlayer

Second input modality

Second superlayer
cross-connections

Merge layers

Output
layer

Output class

Fig. 1: Data flow through the SNN. Each superlayer consists of four FC layers where
each neuron is connected to all of the neurons in the layer indicated by the arrow. The
added cross-connections are also FC layers. The neurons in the later layers learn to
extract more and more complex features, concept illustrated by the gradient in colour.

between the superlayers, but also each individual modality is capable of playing
a significant role in the prediction.

2.3 Comparison with baseline models

The SNN is compared against a multilayer perceptron (MLP) and a recurrent
neural network (RNN), which both concatenate the modalities in the input data.
The MLP consists of several FC layers extracting features from the input data.
On the other hand, the RNN uses Long Short-Term Memory (LSTM) units in
order to learn long-term dependencies from the input sequence [9]. The archi-
tecture used for each model is described in Table 1.

The neurons in the FC layers use the ReLU activation function [10]. He
initialization is used for the weights, while the biases are initialised to zeroes.
Dropout [11], batch normalization [12] and weight decay are used for regulariza-
tion. All of the neural network models were trained for 100 epochs using Adam
SGD optimizer [13] with batch size of 64 and hyperparameters selected through
cross-validation.

The weights in the LSTM units use Xavier initialization, while the forget
gate biases are initialised to a vector of ones to establish gradient flow and to
encourage long-term dependencies at the onset of training [14]; other biases in
the LSTM unit are initialised to zero. Dropout is used as a form of regularization
on the hidden-to-hidden connections in the LSTM layer.

In order to show that the SNN is suitable for performing inference on multi-
omics datasets, we used as additional baselines Support Vector Machines (SVMs)
with RBF kernel, Random Forests (RFs) and k-Nearest Neighbours (kNNs).
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MLP RNN SNN
∼ 57000 params ∼ 27000 params ∼ 22000 params

FC 256-D LSTM 128 features FC 128-D FC 128-D
FC 128-D LSTM 32 features FC 64-D ¯ ® FC 64-D
FC 64-D FC 64-D FC 32-D FC 32-D
FC 32-D FC 32-D FC 16-D FC 16-D

FC 64-D
FC 16-D

FC number of output classes-D

Table 1: Architectures for the neural network models compared. ¯ and ® denote the
cross-connections between the superlayers. The dimension (D) of a FC layer is given
by the number of neurons it contains.

3 Results

Stratified nested k-fold cross-validation was used in order to determine the best
hyperparameters for the models (inner cross-validation) and to evaluate their
performance (outer cross-validation).

Due to the class imbalance in the multi-omics datasets, the accuracy alone
is insufficient in assessing the performance of the models. Additional evaluation
metrics were chosen to obtain a better indication of the discriminative ability of
the models. The evaluation metrics were extended to multiple classes by using
micro-averaging and macro-averaging. Micro-averaging assigns equal weights to
each test example, while macro-averaging gives the same weight to each class. [15]

Metric kNN RF SVM MLP RNN SNN
Accuracy 0.97 ± 0.02 0.96 ± 0.02 0.98 ± 0.01 0.93 ± 0.03 0.95 ± 0.02 0.99 ± 0.01
Precision 0.98 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.95 ± 0.03 0.96 ± 0.02 0.99 ± 0.01

Sensitivity 0.97 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
F1 - score 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.96 ± 0.02 0.97 ± 0.01 0.99 ± 0.01

MCC 0.85 ± 0.04 0.79 ± 0.05 0.88 ± 0.02 0.61 ± 0.09 0.72 ± 0.04 0.91 ± 0.02
ROC AUC 0.97 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.95 ± 0.03 0.93 ± 0.03 0.99 ± 0.01

Table 2: Mean results obtained for each model after 10-fold outer cross-validation for
the breast cancer patients dataset and the standard error in the results.

Metric kNN RF SVM MLP RNN SNN
Micro F1-score 0.90 ± 0.05 0.91 ± 0.02 0.96 ± 0.01 0.93 ± 0.02 0.90 ± 0.03 0.98±0.01

Micro MCC 0.88 ± 0.06 0.89 ± 0.03 0.95 ± 0.02 0.92 ± 0.03 0.87 ± 0.01 0.97±0.01
Macro F1-score 0.85 ± 0.04 0.91 ± 0.01 0.96 ± 0.01 0.85 ± 0.02 0.90 ± 0.02 0.96±0.01

Macro MCC 0.86 ± 0.04 0.84 ± 0.02 0.92 ± 0.01 0.85 ± 0.03 0.86 ± 0.02 0.95±0.01
Accuracy 0.90 ± 0.03 0.91 ± 0.02 0.96 ± 0.01 0.93 ± 0.01 0.89 ± 0.02 0.98±0.01

Table 3: Mean results obtained for each model after 6-fold outer cross-validation for
embryo development dataset and their standard error in the results.

The SNN most explicitly exploits the interactions between the different modal-
ities present in the dataset, thus obtaining higher metric averages, as it can be
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noticed in Table 2 and Table 3.
After studying the weights of the input modalities in the SNN, for the cancer

patients dataset, we have identified that the TNFRSF13C, TNFRSF13B, TN-
FRSF14 genes have the highest impact in the gene expression modality, while
TNFRSF13C, TNFRSF13B and NGFR influence the most the DNA methyla-
tion modality. Moreover, gene ontology analysis of the genes involved in the
cancer patients dataset has shown that the following pathways are enriched:
Cytokine-cytokine receptor interaction, Apoptosis and NF-kappa B signalling
pathway. These results illustrate how the SNN can be integrated into workflows
with other clinical bioinformatics services to support medical decisions.

4 Analysis of cross-connections

In order to understand whether the cross-connections aid with the classification
tasks, we have utilised a t-SNE visualization of the neurons’ activations in specific
layers of the SNN during testing on the cancer patients dataset. Figure 2 indi-
cates that adding the cross-connections between the superlayers—thus allowing
for the different modalities to interact during independent feature extraction—
significantly helps in discriminating the patients with cancer from healthy ones.

Fig. 2: t-SNE plots for the activations of SNN layers on the test set for the breast cancer
dataset. a) and b) illustrate the t-SNE embeddings for the first and second superlayer,
just before the cross-connections. c) and d) illustrate the respective embeddings just
after the cross-connections e) represents the activations after merge layer.

These results show that integrating transcriptomics and epigenomics data is
beneficial for medical diagnosis. Therefore, by analysing the cross-connections,
biologists could determine the mutual influence of various omics measurements,
particularly as these can vary for different regulatory circuits or genome regions.

5 Conclusion

This paper introduces a cross-modal neural network architecture capable of in-
tegrating modalities in multi-omics data thus achieving good performance in
situations where only small training datasets are available. The model achieves
up to 99% accuracy on classification problems with both multi-omic data (tran-
scriptomics and epigenomics) and single-omic data (where k-means clustering
was used to identify modalities).
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The SNN model can be easily scaled up: more superlayers can be added,
thus allowing more types of omic data to be involved, such as the genome copy
number variation and the somatic mutations. Moreover, the SNN could be
applied on regression problems such as survival time analysis of cancer patients
or on predicting the expression levels of genes from their corresponding epigenetic
modifications (e.g. different histone modification markers) based on data from
the Roadmap Epigenomics Project.

Therefore, the proposed cross-modal neural architecture represents a power-
ful tool that can be used for integrating and understanding the role of multi-
omics data in biomedical decisions.
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