
Reliable Patient Classification in Case of
Uncertain Class Labels Using a Cross-Entropy

Approach

A. Villmann1, M. Kaden2, S. Saralajew3, W. Hermann4, and T. Villmann2

1- Berufliches Schulzentrum Döbeln-Mittweida, Dep. Mittweida
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Abstract. Classification learning crucially depends on the correct label
information in training data. We consider the problem that a respective
uncertainty can neither be neglected nor it can be approximated by a
statistical model. In the proposed approach each training data is equipped
with a certainty value reflecting the probability of the label correctness.
This information is used in the learning process for the classifier. For this
purpose, we adopt the cross-entropy cost function from deep learning for
a modified learning vector quantization model. We show the usefulness of
this knowledge integration in medical diagnostic data analysis for detection
of Wilson’s disease as an example.

1 Introduction

Classification learning in medicine and bioinformatics becomes more and more
successful due to the availability of advanced classifier models like deep archi-
tectures together with sophisticated training procedures [5, 13]. Yet, the success
of classification learning crucially depends on the training data. One important
aspect is the reliability of the data labels, i.e. the correctness of the assignment
of the training data to the available classes [4]. Yet, for many application areas
this is a serious problem, like in remote sensing image analysis. Here image pixel
cover a certain ground area which can contain a mixture of soil or vegetation
such that a specific class assignment of a single pixel might be crucial [17]. One
solution for this problem could be multi-class models [18]. Often, general classi-
fication uncertainties for training data are handled assuming a statistical model
for the label noise [2, 11].

In medical data analysis the labels of diagnostic data are the respective med-
ical diagnoses made by the doctor. However, often multiple diagnoses are given
or the medical indication only allows a weak decision. For example, psychother-
apeutic diagnoses frequently are equipped with a high degree of uncertainty
regarding a specific mental disorder. This kind of uncertainty usually does not
follow a statistical distribution assumption and, therefore, has to be carefully
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distinguished from the above mentioned multi-class problem [15]. More likely,
the possible doubt of medical doctors is case specific depending on the symptoms
and results of the medical examinations.

Otherwise, medical doctors usually have a keen sense, whether a certain
diagnosis for a patient is equipped with high vagueness or not. Sometimes, this
additional knowledge is available for the trainings data but then usually ignored
by the learning system because of the intractability as a statistical model.

In this contribution we propose an approach to deal with situations where
this additional knowledge regarding the data specific label uncertainty is avail-
able for training data. Additionally, we are faced with the problem that only a
few data are available for training as it is frequently the case for medical prob-
lems. Yet, this causes difficulties in deep learning, particularly, successful pre-
training techniques like auto-encoders for deep networks cannot be applied for
those tasks [1, 9]. Thus, we have to concentrate on classifier methods like learn-
ing vector quantizers (LVQ,[10]), which can be applied also for those few data.
Moreover, we modify the generalized LVQ (GLVQ,[12]) taking the advantage of
the cross-entropy cost function. As it was shown in [14], combination of ideas
from deep architectures and easy-to-interpret LVQ models generally seems to
be a promising way to deal with specific problems. The cross-entropy is usually
applied in deep learning architectures, due to its excellent performance behavior
for gradient descent learning techniques [5]. Yet, the cross-entropy requires a
probabilistic decision model. For this purpose, we tackle the label uncertainty
as a statistical model for the binary problem of correct or incorrect class labeling
specifically for each data.

The medical problem, for which we apply our method, is the detection of
the rare Wilson’s disease (WD,[6]) based on medical examination results. These
data labels are provided by medical experts together with a value indicating
their certainty regarding the diagnosis.

2 Classification Learning with Uncertainties in GLVQ Us-
ing Cross-entropy Costs

2.1 Basic GLVQ

GLVQ belongs to the set of prototype based classifiers, i.e. prototypes (reference
vectors) serve as representatives for the class distribution. For training vector
data x ∈ X ⊆ Rn with class labels c (x) ∈ C = {1, . . . , C} a set of prototypes

W = {wk}Mk=1 is distributed in the data space X. Thereby, each prototype is
assigned to a class c (wk) ∈ C such that each class is represented by at least one
prototype. In the application mode an unknown data vector x is assigned to the
data class c (ws) according to the winner-takes-all (WTA) rule

s (x) = argminkd (x,wk) (1)

determining the best-matching prototype ws with minimal dissimilarity measure
d (x,wk), frequently chosen as the Euclidean distance. The set Rwk

= {x ∈
X|k = s (x)} is denoted as the receptive field of prototype wk.

Following [12], learning in GLVQ takes place as a stochastic gradient descent
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for the cost function

EGLVQ (X,W ) =
∑
x∈X

ϕθ (µ (x,W )) (2)

with local costs ϕθ (µ (x,W, d)) approximating the local classification error.
Here, ϕθ (z) = 1/ (1 + exp (z/θ)) is the sigmoid transfer function such that in the
limit θ ↘ 0 the transfer function becomes the Heaviside function. The argument

µ (x,W ) =
d+ (x)− d− (x)

d+ (x) + d− (x)
(3)

is denotes as the classifier function, where d+ (x) = d (x,w+) is the dissimilarity
of the best matching prototype w+ = ws+ with correct class assignment, i.e

s+ = argmink=1...M |c(wk)=c(x)
d (x,wk) (4)

and w− = ws− is, in analogy, the best matching prototype for all incorrect
classes. Stochastic gradient descent learning of EGLVQ (X,W, d, θ) takes place
as prototype updates according to

∆w± ∝ ∂ϕθ (µ)

∂µ
· ∇w± (µ) with ∇w± (µ) =

∂µ

∂d±
∂d±

∂w±
(5)

calculated pursuant to the chain rule for derivatives.

2.2 Incorporation of Label Uncertainty of Training Data into GLVQ

As motivated in the introduction we now turnover to the incorporation of la-
bel uncertainty into the GLVQ model assuming a certainty value ζ (x) ∈ [0, 1]
for correct labeling of a training data x. The higher the value ζ (x) the higher
is the certainty that the data label is true. This value has to be delivered
by the users who generated the training data evaluating their uncertainty re-
garding their classification decision. Appropriately, we can interpret the value
ζW (x) = ϕθ (−µ (x,W )) ∈ [0, 1] as the certainty of the GLVQ regarding a cor-
rect classification. This choice is motivated by the idea of reject options for
vague decisions based on the classifier value µ (x,W ) [3, 16]. Hence, both cer-
tainty values ζ (x) and ζW (x) can be seen as probabilities for correct labeling
and classification, respectively, whereas 1 − ζ (x) and 1 − ζW (x) are the con-
verse probabilities for incorrect labeling and classification. Hence, we consider a
probabilistic binary problem now.

Thus, we can reformulate the training task for classification learning in this
way that we want to achieve a high compliance between the certainty values for
correct labeling/classification of the data. Due to the probabilistic view, we can
adopt the idea of deep learning cost function for our binary problem resulting
in the (negative) local cross-entropy

Cr (x,W ) = −ζ (x) · ln (ζW (x))− (1− ζ (x)) · ln (1− ζW (x))

for each data x. Thus we obtain the new cost function

ECrGLV Q−U (X,W ) =
∑
x∈X

Cr (x,W, ϕθ) (6)
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Fig. 1: Triangle dataset - three overlapping classes. Bold symbols indicate a
label certainty ζ (x) = 1 whereas for the other data ζ (x) < 1 is valid. The
different certainty areas within the classes are separated by black lines.

to be minimized by stochastic gradient descent learning. The respective proto-
type learning rule is obtained as

∆w± ∝ ∂Cr (x,W )

∂ζW (x)
· ∂ζW (x)

∂µ
· ∇w± (µ) (7)

which can be calculated using the relations

∂Cr (x,W )

∂ζW (x)
= − ζ (x)

ζW (x)
+

1− ζ (x)

1− ζW (x)
and

∂ζW (x)

∂µ
= −∂ϕθ (µ)

∂µ

for the derivatives. The resulting GLVQ variant is denoted as Cross-entropy
GLVQ with Uncertainty (CrGLVQ-U).

3 Experiments

We report the results of two experiments we conducted. The first experiment is
a two-dimensional toy example to illustrate the method. The second one is the
classification of patients regarding their electro-physiological impairment profiles
in case of Wilson’s disease detection.

Toy Example - the Triangle Dataset The triangle dataset consists of 2D-data
belonging to three overlapping classes, see Fig.1. We trained a GLVQ as well as
a CrGLVQ-U with one prototype for each class. The certainty value in regions
with increased uncertainty was set randomly as ζ (x) ∈ [0.5, 1]. However, only
CRGLVQ-U uses this additional information. The resulting prototype configura-
tions are visualized in Fig.2. We observe that the prototypes of CrGLVQ-U try to
be responsible for areas with high label certainty whereas the GLVQ-prototypes
are located more in the class centers despite the weak certainty information in
this region. To reflect this behavior precisely, we introduce the quantity

ζw (X) =
#
{
x ∈ X|w = ws(x) ∧ c (x) = c

(
ws(x)

)}
#
{
x ∈ X|w = ws(x)

}
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Fig. 2: Learned prototypes for standard GLVQ (F) and CrGLVQ-U (♦). The
prototypes for the CrGLVQ-U moved to the class areas with high certainty
value to ensure a secure classification whereas standard GLVQ-prototypes do
not benefit from this information and, therefore, are located in regions with
high uncertainty.

denoted as the classification certainty of the prototype w regarding the prototype
class c (w). Hence, the classification certainty of w is the fraction of data points
in the receptive field Rw belonging to the same class like w. The overall model
classification certainty is the average ζ (X,W ) = 1

|W |
∑

w∈W (ζw (X)). For the

GLVQ we obtain ζ (X,W ) = 0.7357 whereas the CrGLVQ-U yields ζ (X,W ) = 1
indicating a clear improvement of he classification certainty.

The Wilson’s Disease Dataset We apply the model to a real medical
dataset for patients suffering from Wilson disease (WD) (with uncertainty) or
being considered as healthy. WD is a copper metabolism disturbance leading
to neurological impairments. The initial non-neurological phase is followed by a
neurological phase with increasing neurological deficits. A precise WD-diagnosis
is difficult and costly. One cheaper alternative is to consider electro-physiologic
impairment profiles (EIP) consisting of vector of electro-physiological stimulus
responses [8]. Yet, just considering those profiles gives increased uncertainty
regarding a final diagnoses - particularly the non-neurological phase has high
clinical uncertainty [7]. Our dataset consists of six-dimensional EIP-data 77
WD-patients, 59 diagnosed as neurological patients, i.e. having a certainty value
for WD-diagnosis of 1 whereas 18 patients are diagnosed as non-neurological
patients giving a certainty value 0.7 for WD-diagnosis. Additionally, the EIP
from 48 volunteers are available (certainty 0.999 - reflecting WD-prevalence).
We applied GLVQ and CrGLVQ-U with one prototype per class, the results
are given for a five-fold cross-validation. For the standard GLVQ we obtained
an averaged model certainty of ζ (X,W ) = 0.84 (±0.054) whereas CrGLVQ-U
achieved a certainty ζ (X,W ) = 0.89 (±0.015). Hence, the incorporation of label
certainty information in learning leads to a better classification certainty.

4 Conclusion

In this contribution we consider the incorporation of label certainty for training
data into the learning strategy. For this purpose, we modified the standard
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GLVQ to utilize this additional knowledge during training. Particularly, we
introduced certainty values for labels to obtain a probabilistic model, which
enables to apply the cross-entropy cost function known from deep learning. Thus,
a better model classification certainty is obtained for the trained classifier.
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