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Abstract. Analyzing plant roots is crucial to understand plant perfor-
mance in different soil environments. While magnetic resonance imaging
(MRI) can be used to obtain 3D images of plant roots, extracting the root
structural model is challenging due to highly noisy soil environments and
low-resolution of MRI images. To improve both contrast and resolution,
we adapt the state-of-the-art method RefineNet for 3D segmentation of the
plant root MRI images in super-resolution. The networks are trained from
few manual segmentations that are augmented by geometric transforma-
tions, realistic noise, and other variabilities. The resulting segmentations
contain most root structures, including branches not extracted by the hu-
man annotator.

1 Introduction

Plant roots have been a long-standing research topic due to their crucial role
for plants [1]. Their analysis requires extracting the root structural model. To
that end, 3D measurements of plant roots in opaque soil are obtained with
MRI (Figure 1) for use in root model extraction algorithms [1, 2, 3]. Often,
the soil is noisy and the resolution of MRI images is too low to capture thin
roots with precision, resulting in low signal-to-noise ratio (SNR). With low SNR,
automated extraction of root structural models is challenging [2], requiring a
preprocessing step to reduce the noise and increase the resolution artificially.
In recent years, deep learning methods have shown great success with many
computer vision tasks such as image classification [4], action detection [5], and
semantic segmentation [6]. To improve both contrast and resolution of MRI,
we adapt the state-of-the-art transfer learning method RefineNet [6] for 3D,
super-resolution segmentation of plant root MRI images as root vs non-root.
Since the original data we were provided with is insufficient for training, we
generate our own synthetic training data from reconstructed root structures.

2 Related Work

Recent deep learning methods define the state-of-the-art results for semantic
segmentation [6, 7]. Using a technique known as transfer learning, the features
learned from large data sets are leveraged to initialize training on a small, related
data set, resulting in shorter training times and less need for training data.

∗This research was supported by grant BE 2556/15 of German Research Foundation (DFG).
We thank Andrea Schnepf (Bonn/FZJ) for providing MRI and annotations.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

553



Fig. 1: First two images depict the 3D visualization and a single slice from
Root 1. Third and fourth images depict the 3D visualization and a single slice
(contrast enhanced & magnified) from Root 2.

Despite extensive work on semantic segmentation for 3D medical data, the
use of 3D CNNs remains limited due to high memory and computational power
requirements of training. For example, a 3D CNN is proposed by Kleesiek et
al. [8] for skull stripping from MRI images. However, the dataset is rather small
and the resulting segmentations have lower resolution than the network input.

2D CNNs can also be utilized for segmentation of 3D data. A 2D CNN
by Pereira et al. [9] achieves comparable results to the state-of-the-art results at
brain tumor segmentation from MRI images.

In addition to semantic segmentation, deep learning methods also define
state-of-the-art results for super-resolution. Usually, the mapping from low-
resolution to a higher resolution is done by incorporating upsampling [10], trans-
posed convolutional layers [11], or serialization [12].

Dusschoten et al., Schulz et al. [1, 2] introduce algorithms for automated
structural model extraction from MRI root images, yet, these algorithms do not
perform well on MRI images with low SNR. Using 3D CNNs, an attempt to in-
crease the SNR by 3D segmentation of MRI images has been made by Horn [13].
While accurate results can be obtained, higher memory consumption and longer
training times prevent the construction of deep architectures. Moreover, training
is difficult as the networks are highly volatile to parameterizations of learning
rate, kernel size, number of channels, and number of layers.

3 Segmentation Method

To increase the resolution, we target super-resolution factor k = 2, i.e., mapping
from an input image I ∈ R

x×y×z to a binary segmentation S ∈ B2x×2y×2z. The
non-root and root voxels are denoted with 0 and 1, respectively. We label the
axis that follows the plant root from top to the bottom as z while the other two
axes are labeled with x and y. A layer is referred to a single slice of 1 voxel
thickness on the z axis.

It has been reported that 2D CNNs can generate accurate segmentations of
3D data [9]. Encouraged by the benefits of transfer learning [14] and state-of-
the-art results of the RefineNet [6], we adapt 2D RefineNet for 3D segmentation
of plant root MRI images in super-resolution. We apply 2D segmentation on
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Fig. 2: 7-Cascade RefineNet. Includes figures from Lin et al. [6].

each layer of the MRI image and obtain two consecutive segmented layers on
the z axis that have twice the resolution of the input in both x and y axes.

3.1 RefineNet

RefineNet [6] exploits both high and low-level features of the pretrained net-
works by introducing RefineNet blocks. Through these blocks, feature maps
with different resolutions are fused together to produce high-resolution outputs.
Lin et al. [6] cascade RefineNet blocks for best performance. We extend the
original 4-Cascade RefineNet architecture [6] to construct 7-Cascade RefineNet
(Figure 2) for image segmentation.

We apply the segmentations layer-wise. Since 3D information must also be
exploited, for segmentation of each single layer, we use the layer itself and its four
neighboring layers. Extracting features from ResNet requires 2D RGB images,
thus, these five layers must be mapped to three channels. To compress the
data into three channels while retaining maximum information, PCA is used.
The first, second, and the third components of PCA are mapped to green, red,
and blue respectively; according to the contribution of each channel into image
luminance.

The cascaded RefineNet blocks are shown in Figure 2. As in the original
4-Cascade RefineNet [6], the resolution on both x and y axes are increased by
a factor of two at each block. To achieve a super-resolution factor of two, we
add three more blocks. Features that are extracted from five different stages of
ResNet are fed to blocks 1–5. The remaining blocks 6&7 operate on the original
and super-resolution inputs. As they do not use the activations of ResNet,
mapping to RGB is skipped; the original five layers of input are utilized directly
by interpreting these layers as the channels of the network input. The 7th
RefineNet block is followed by a 1×1 convolutional layer outputting two channels.
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Through the use of the logistic sigmoid function, the two channels are interpreted
as two consecutive predicted layers where the voxel values denote the confidence
of the network that the voxel belongs to a root.

3.2 Data Augmentation and Training

We were provided with four MRI root images and their manual root structure
reconstruction. From the root structure, ground truth for the MRI images can
be generated by voxelization. As the generated root voxels do not align well
with the root structures in the MRI images, we cannot use real MRI images
for training with the generated ground truth, though. We address this issue by
generating artificial MRI images with perfectly aligned ground truth. Variety
is introduced with transformations such as thickness adjustment, rotation, mir-
roring etc. Modeled after the MRI images in Fig. 1, we generate soil noise in
different intensity scales using Perlin noise, uniformly and normally distributed
noise for artificial MRI images. We use 384 artificial MRI–ground truth pairs
for training and 384 for validation. The network is trained for 100 epochs with
learning rate 6e-4 and gradient clipping 0.01 on artificial training pairs.

3.3 Evaluation

Only a small fraction of the number of voxels actually contain root, thus, F1-
Score is used as a metric for robustness against class imbalance. On augmented
data, we calculate the average F1-Score on the whole validation set. Moreover,
the overall F1-Score for a given SNR range is also calculated.

The provided manual root annotations often contain misalignments with the
real MRI images. We introduce a Distance Tolerant F1-Score for robustness
against such small differences. To this end, we define distance tolerant precision
p′ and recall r′ as follows:

p′ =

∑x̂,ŷ,ẑ
i,j,k=0 dilate(G, d)i,j,k · Si,j,k

∑x̂,ŷ,ẑ
i,j,k=0 S

i,j,k
, r′ =

∑x̂,ŷ,ẑ
i,j,k=0 G

i,j,k · dilate(S, d)i,j,k
∑x̂,ŷ,ẑ

i,j,k=0 G
i,j,k

where G,S ∈ B
x̂,ŷ,ẑ are ground truth and predicted segmentation, respectively.

Given a distance tolerance d, dilate(I, d) refers to a morphological dilation of
binary image I by d voxels. Using p′ and r′, F1-Score is calculated as usual.
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Fig. 3: Segmentation performance on the augmented data validation set.
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4 Results

We evaluate our method on both synthetic (validation set) and real (test set)
MRI data. The results on the validation set are presented in Fig. 3. Compared
to the mean F1-Score 0.84 of Horn [13], ours is much better: 0.95. We further
train a RefineNet architecture with the transfer learning layers removed; the
average F1-Score drops from 0.95 to 0.91. For SNR lower than 3.16, the average
F1-Score is 0.84 compared to 0.89 of the original; the remaining SNR ranges
do not show much difference. The network is further tested on two real root
MRI images using distance tolerant F1-Score (Figure 4). The results indicate
that most roots are reconstructed correctly. The super-resolution contours of the
segmented roots are detailed and smooth. Our method even detects additional
roots not reconstructed by the human annotator, which are counted as false
positives. For Root 2, our method is sensitive to elongated MRI artifacts, which
have not been present in the synthetic training data.
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Fig. 4: Performance on real MRI. The bottom row shows segmentations with
distance tolerance of 5 voxels (best viewed in color). Green, red and blue rep-
resent true positives, false negatives, and false positives, respectively. Root 1
contains minor false positives and almost no false negatives. Root 2 contains
minor disconnectivities and MRI artifacts as false positive.

5 Conclusion

We developed a 2D CNN for 3D segmentation of plant root MRI images in
super-resolution. As the data we were provided with was too small to train a

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

557



neural network, we used a transfer learning architecture and generated synthetic
training data. With the exception of some extreme cases where the roots are
extremely thin, our network performs well on the augmented data. On real
data, we successfully detect most of the root structures; including some that are
missing in the manual annotations. MRI artifacts introduce false positives in our
predictions, which could be mitigated by including these in data augmentation.
In future work, the utility of root-thickness dependent losses, data from different
growth stages, and additional MRI channels might be investigated.
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