
Lightweight autonomous bayesian optimization
of Echo-State Networks

Luca Cerina1, Giuseppe Franco2, Marco D. Santambrogio1

1- Politecnico di Milano - Dip. di Elettronica, Informatica e Bioingegneria
Piazza Leonardo da Vinci, Milano - Italy

2- Scuola Superiore Sant’Anna & Università di Pisa, Pisa

Abstract. Echo State Networks (ESN) represent a good option to tackle
non-linear, time-dependent problems without the training complexity of
standard Recurrent Neural Networks (RNNs), thanks to intrinsic dynam-
ics that arise from untrained sparse networks. However, performance and
stability of ESN are determined by their hyper-parameters, e.g. Reser-
voir dimension and sparsity, and the characteristics of the input, whose
optimal values required time consuming procedures to be found. Here
we propose an efficient automatic optimization framework for ESN based
on the Bayesian Optimization given user-defined objectives, and bounded
ranges on hyper-parameters. Results shown performance comparable with
exhaustive grid-search optimization algorithms.

1 Introduction

Recently, methodologies based on Neural Networks capable of embedding tem-
poral dynamics, namely Recurrent Neural Networks (RNNs) and Reservoir Com-
puting (RC), started to tackle time-series problems. In this scenario, RC-based
Echo State Networks (ESN) [1] machines proved to be extremely valuable in
modeling nonlinear time-series. ESN exploit their sparse reservoir to project
the input in a non-linear, high dimensional, state space and then apply simpler
linear models to perform inference on the internal state.

In certain tasks, ESN outperforms regular RNNs for accuracy and training
efficiency, although they have more stringent requirements on stability, calcu-
lated using the Echo State Property (ESP) [2] or the Lyapunov Exponents [3],
due to the intrinsic non-linearity of the reservoir. Furthermore, performance
such as network accuracy, memory, and computational efficiency are dependent
from a variety of hyper-parameters that are problem-specific given the input
dynamics and should be determined before the training. The optimization of
these parameters is a time consuming process done by the user through trial-
and-error [4] or by sampling points in the configuration space, both randomly,
with possibly sub-optimal solutions, or through exhaustive grid-search, which
grows exponentially with Nparams.

Conversely, automatic optimization could be performed using different meth-
ods, e.g. gradient descent [5] or genetic algorithms [6]. Another method exploits
Bayesian Optimization (BO) [7] to perform robust RC optimization: given a
fitness function E(x), BO tries to find its best approximation and search the
maximum on that, determining automatically the points in the parameter space
that could be closer to the optimum.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

637

In this paper we propose a lightweight BO framework for ESN built on the
LIMBO library [8] which trains the model starting from a high-level abstract
model: the user defines only the Training/Validation/Test sets, an error function
selected among many, and the parameters, that can be fixed, or bounded inside
a range if needed to be optimized. Compared to the method in [7], it does not
require to re-implement part of the ESN code to fit the specific problem, but
embeds a set of ESN models (e.g. standard and leaky integrator, with different
cost functions) which are chosen by the user in the configuration process.

The computing architecture, written in C++ to focus on computational ef-
ficiency and reduced memory footprint, samples different points selected by the
BO until it reaches the best configuration or a maximum number of iterations.
Furthermore, the computing architecture (based on Eigen1) can be tuned to run
on multi-core machines, or edge devices with limited resources, allowing the user
to deploy the ESN near the source of data.

The framework is validated against multiple benchmark datasets and ob-
tained performances comparable with the State-of-the-Art (SoA) and shows an
exponential speed-up compared to Grid Search.

2 Bayesian optimization of ESN

In ESN the network consists of a reservoir, a large set of sparsely connected
non-linear units, whose state is used for inference by means of a linear readout
mechanism, and their efficiency lies in the possibility to train just the weights
associated to the readout layer, granted that the reservoir is stable under the
Echo State Property, and leave the reservoir untrained. Compared to other
neural nets, ESN are characterized by a lower set of hyper-parameters to be
optimized, but their impact on the result (e.g. the network accuracy) is difficult
to discern in an analytical way for every problem presented to the network.

Given E(x) as our fitness function (e.g. the network accuracy), we search
the vector of hyper-parameters x that maximizes E(x) and drive the ESN in an
optimal state. The simplest method is Grid Search, which evaluates E(x) on
the entire space of parameters, but it has many drawbacks, especially regarding
the computational cost in terms of resources, time, memory and it considers
each sample alone without the knowledge that we gain after testing a new set of
hyper-parameters xn. On the contrary, BO builds and internal approximation
of the fitness function, exploiting the prior information about E(x), p(E), and
the set of observations that collected up to now D = {x1...xn,y1...yn}, through
the likelihood function p(D|E). Exploiting the Bayes Theorem, we can obtain
the posterior distribution of E(x) as:

p(E|D) ∝ p(D|E) ∗ p(E) (1)

With each new sample, BO reaches a better representation of the shape of E(x)
and thus can make a more accurate guess of the location of the function’s max-
imum. A detailed explanation can be found in [9].

1eigen.tuxfamily.org

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

638

If we consider the architecture of an ESN in its most simple form [5], it
consists of Win of NxK input weights, the reservoir Wr with NxN units, and
the UxL readout Wout.

At each time-step, the network updates as:{
x(t) = (1− a) ∗ x(t− 1) + a ∗ f(Winu(t) + Wrx(t− 1))

y(t) = Woutx(t)
(2)

Where f(·) is a sigmoid activation function (≡ tanh in our case), and a is the leaky
factor ∈ [0, 1], that allows to control the speed in the reservoir dynamics. Small
values of a mean that more time is required to adapt the reservoir to changes
in the input. The most important parameter to control is the ESP [1, 2], which
grants that every dependence from the initial conditions is progressively lost,
and that Wr asymptotically drives the system to a stable state dependent only
on the input sequence u. A practical condition for the ESP can be formulated
as ρ(a ∗Wr + (1− a) ∗ I) < 1, where ρ(·) represents the spectral radius of the
matrix. Although this condition doesn’t ensure the ESP, it has been shown that
in practice is sufficient in order to obtain a stable system [4, 10].

Other hyper-parameters that drive the network performance are the number
of reservoir units N, the sparsity of the matrix Wr, and the number of samples
washed away to ignore initial conditions. Win is initialized from a random uni-
form distribution in the range [−Winscale,Winscale], another hyper-parameter
of the network; in our proposal they are all defined by bounded ranges (e.g.
N [100, 1000]). An acquisition function decides which point should be evaluated,
to determine the balance between exploration (i.e. searching points in space
with less information) vs exploitation (i.e. searching regions of space that looks
more promising).

3 Proposed solution

We propose here a standalone C++ library with high abstraction configurations
that performs Bayesian Optimization for Echo State Networks, and provide plug
interfaces to deploy trained models. An overview of the system in visible in
Fig. 1. The Bayesian Optimizer exploits the Limbo Library [8], enclosing a
custom parametrized ESN library built upon Eigen (eigen.tuxfamily.org) a fast
templated library for linear algebra.

User provided input Bayesian Optimizer
Optimal parameters

Trained ESN
model

OutputConfiguration Frontend

Echo State
Network

Fitness function error

Optimization
manager

Hyper-parameters

Runtime
management

Configuration file:

- Input path
- Optimization

boundaries
- Fitness function
- Training model

Dataset

Sensors

Fig. 1: Graphical depiction of the architecture. The user inputs data along with
an abstraction of the problem to generate a likely optimal configuration.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

639

3.1 Configuration and I/O module

As visible in Fig. 1, the library allows a general data source for pre-built datasets
(machine learning or prototyping), and other sources that employ the system
online. The dataset on disk must be divided in Training, Test and Validation set,
in order to build the network, evaluate the training error and avoid overfitting.
It also requires a YAML configuration file, where the user specifies the data and
the parameters used in the optimization. Currently the configuration contains
the ESN parameters optimized by Limbo, the range values where to search or
their fixed value, the type of problem learned by the ESN (i.e. regression vs
classification), and other stopping conditions based on the Fitness reached or
the Number of Iterations performed.

The optimization manager (OM) acts as the frontend, passing the configura-
tion parameters to the optimizer and managing the runtime. For example, given
a set of inputs, the user could obtain an ESN that consider them altogether, or
optimize multiple models for each problem. The OM controls also the level of
parallelization of the system, defining the number of threads used in the initial
sampling and in the computation of states.

When the optimization process ends, the system provides a set of files with
optimized hyper-parameters and pre-loaded portable weights, plus the observa-
tions and outputs generated in the BO, useful for further analyses.

3.2 Computational optimizations

Multiple strategies have been adopted in order to speed-up some of the com-
putation during the training of the network. A fast solver for sparse matrices
is used to scale Wr initialization to the desired ρ over the spectral radius, to
ensure the ESP. The update of states of ESN is handled using Eigen SpMV
(Sparse Matrix multiplies Dense Vector) optimization. Instead, the computa-
tion of readout regression Wout is calculated using a Full-Pivot QR solver, which
is nearly 2x faster than Moore-Penrose and more robust than pseudo-inversion.

Both in ESN state computations and in the initial random sampling the CPU
multi-threading is exploited to reduce the overall computational time.

4 Results and discussion

To validate our system, we optimized a ESN against common benchmark for
chaotic time-series, the Santa Fe Laser Data [11], NARMA10 emulation [12], and
the prediction of Rossler attractors, useful to evaluate the optimization against
multiple outputs. All benchmark tasks required the prediction of one step ahead
in time, but the system allows prediction on an arbitrary number of steps in the
future. All the tests were run multiple times on a desktop machine: Intel i7-
6700@3.4GHz, 32GB DDR4 RAM and compiled with maximum optimizations
and OpenMP support.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

640

Grid search test NRMSE : 0.061574

0.1 0.45 0.8 1.15 1.5
0.1

0.325

0.55

0.775

1

W
in

 s
c
a
le

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bayesian search test NRMSE : 0.060718

0.1 0.45 0.8 1.15 1.5
0.1

0.325

0.55

0.775

1

W
in

 s
c
a
le

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 2: Parameter Space Exploration of input scale and ρ, with Grid Search vs
Bayesian Optimization on Laser Test set.

4.1 Comparison with Grid Search Optimization

In Fig. 2 it is possible to see the Parameter Space Exploration with Grid Search
and BO, using NRMSE as 1 − E(x). Through BO we can obtain a very good
approximation of the parameters’ space, combining a smart sampling that ig-
nores high-error regions (in Fig. 2 high ρ and small Winscale) while focusing
on more promising area. Another test with 3 parameters obtained a substantial
speed-up: 13 seconds of BO compared to nearly 44 minutes for Grid Search. It
is important to remark that in a real example the time required for Grid Search
would increase exponentially, while the BO needs a small amount of iterations
(fixed to 40 in Fig. 2) to reach a maximum of E(x).

4.2 Comparison with State of the Art Optimization

The comparisons with the SoA, which comprises various ESN architectures, has
been carried out using the Normalized Root Mean Squared Error (NRMSE) as
1 − E(x) and optimizing for the following parameters: size and density of Wr,
spectral radius ρ(·) , input scaling, washout samples and leaky factor a.

Table 1: Prediction performance NRMSE against SoA implementations.

Task SoA Our proposal

Narma10 0.0833±0.0295 [7] 0.0817±0.0114
Laser 0.0060 [13] 0.0057
Rossler 4.647e-05 [14] 6.48e-12

It is visible from Table 1 that our proposal is comparable or better than
those available in the SoA (using similar testing settings), using a standard ESN
optimized along different parameters.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

641

5 Conclusions

In this paper, we presented a framework for the autonomous bayesian optimiza-
tion of echo-state networks. The proposed system is easily configurable and does
not require a specific knowledge of the underlying architecture, while being able
to achieve performance comparable to those in the State of the Art. The specific
implementation is portable, efficient in both computation and memory an it is
suitable also for low-end devices.

Current limitations include the absence of other sigmoid activation functions
(e.g. logistic sigmoid), other Echo-State network topologies such as Deep Reser-
voir or Cyclic Reservoir and modular implementation of E(x). These extensions
will be added in future developments. Other improvements will include the opti-
mization of parameters with respect to memory and Lyapunov’s stability instead
of Echo-State Property.

References

[1] Herbert Jaeger. The echo state approach to analysing and training recurrent neural
networks-with an erratum note.

[2] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3):127–149, 2009.

[3] Claudio Gallicchio, Alessio Micheli, and Luca Silvestri. Local lyapunov exponents of deep
echo state networks. Neurocomputing, 298:34–45, 2018.

[4] Mantas Lukoševičius. A practical guide to applying echo state networks. In Neural
networks: Tricks of the trade, pages 659–686. Springer, 2012.

[5] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Optimization
and applications of echo state networks with leaky-integrator neurons. Neural networks,
20(3):335–352, 2007.

[6] Aida A Ferreira, Teresa B Ludermir, and Ronaldo RB De Aquino. An approach to
reservoir computing design and training. Expert systems with applications, 40(10), 2013.

[7] Jan Yperman and Thijs Becker. Bayesian optimization of hyper-parameters in reservoir
computing. arXiv preprint arXiv:1611.05193, 2016.

[8] A. Cully, K. Chatzilygeroudis, F. Allocati, and J.-B. Mouret. Limbo: A Flexible High-
performance Library for Gaussian Processes modeling and Data-Efficient Optimization.
The Journal of Open Source Software, 3(26):545, 2018.

[9] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[10] Gilles Wainrib and Mathieu N Galtier. A local echo state property through the largest
lyapunov exponent. Neural Networks, 76:39–45, 2016.

[11] Neil A Gershenfeld and Andreas S Weigend. The future of time series. Technical report,
Xerox Corporation, Palo Alto Research Center, 1993.

[12] Amir F Atiya and Alexander G Parlos. New results on recurrent network training: unify-
ing the algorithms and accelerating convergence. IEEE transactions on neural networks,
11(3):697–709, 2000.

[13] Davide Bacciu and Andrea Bongiorno. Concentric ESN: assessing the effect of modularity
in cycle reservoirs. CoRR, abs/1805.09244, 2018.

[14] Hoang Minh Nguyen, Gaurav Kalra, Tae Joon Jun, and Daeyoung Kim. A novel echo
state network model using bayesian ridge regression and independent component analysis.
In International Conference on Artificial Neural Networks, pages 24–34. Springer, 2018.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

642

