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Abstract. The present work introduces a new online regression method
that extends the Shrinkage via Limit of Gibbs sampler (SLOG) in the
context of online learning. In particular, we theoretically demonstrate
that the proposed Online SLOG (OSLOG) is derived using the Bayesian
framework without resorting to the Gibbs sampler. We also state the
performance guarantee of OSLOG.

1 Introduction

Offline L1−regularised regression [18], known as Lasso, has been studied well in
the past. In batch setting the goal is to find the regression model weights, w, by
solving:

wLasso = argmin
w∈Rn

||Y −Xw||2
2
+ λ||w||1 (1)

given training data X, labels vector Y and a hyper-parameter λ. A Bayesian
solution for Lasso weights estimation using Gibbs Sampler was proposed in [11]
and later developed further in [12] resulting in the Deterministic Bayesian Lasso
or better known as SLOG. By multiplying wLasso with test data one can obtain
predictions in batch setting.

On the other hand, in online learning predictions are made sequentially. On-
line learning is useful when the application lends itself continuous learning (con-
cept drift) [15] or there is too much data that can’t fit into memory at once. Most
of the work related to online L1−regularised regression relies on gradient descent
methods (e.g., sub-gradient, coordinate descent and other proximal algorithms)
to compute the estimates of the model weights see for example [9, 5, 4, 16].

In contrast, the proposed algorithm learns by updating covariance matrix.
At each trial T = 1, 2, ..., our learning algorithm receives input xT ∈ R

n, makes
prediction γT ∈ R and than receives the actual output yT ∈ R. Arguably the
proposed method might not retain the sparsity properties when implemented
with only one pass over the data. Nevertheless, it will have some degree of
sparsity, we leave this matter for latter part of the paper. The fundamental
advantage of using covariance-based approach is that one can obtain logarithmic
regret, which is so far not possible when using gradient and sub-gradient descent
approaches to solve the least squares regression problem. In [20], it is shown
that for an arbitrary convex loss function, online gradient descent has the regret
growth rate of

√
T . Moreover in general, for arbitrary convex loss function, this
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can’t be improved. However, it is possible to obtain logarithmic regret using the
online Newton step [6]; but such approach gives no advantage in terms of time
complexity over the covariance-based approach for regression [10].

It is worth noting that SLOG assumes that the entries of the regressor matrix
are drawn from a distribution that is absolutely continuous with respect to
Lebesgue measure [19, 12]. We will make no such assumption for OSLOG.

The SLOG algorithm proposed by Rajaratnam et al. [12] maximises the pos-
terior distribution w ∈ R

n given the response y ∈ R
n i.e., argmaxw∈Rn p(w|y). It

is assumed that y|w follows the normal distribution and w follows the Laplace
or double exponential distribution. To derive SLOG, Rajaratnam et al. [12]
tweaks the approach mentioned by Park and Casella [11] for Bayesian Lasso al-
gorithm. Both SLOG and the Bayesian Lasso consider a hierarchical model by
writing the Laplace distribution as a scale mixture of the Gaussian distribution
[2]. The weight updating rule of the Bayesian Lasso is the joint posterior ob-
tained through the hierarchical model. Then, it is shown that by using the Gibbs
sampler on the joint posterior converges to the L1−regularisation regression so-
lution. SLOG uses the same approach as the Bayesian Lasso with a different
tuning parameter. SLOG replaces the tuning parameter λ > 0 in (1) by a

√
σ2

with known variance σ2. Consequently, as the limit σ2 → 0 of the Gibbs sam-
pler, it reduces to a deterministic sequence, giving the weight updating rule of
SLOG. In this work, for OSLOG same weight updating equation as SLOG is
obtained but without the use of Gibbs Sampler. Also, a performance guarantee
for OSLOG is given. So, the major contributions of this paper are:

1. derivation of an algorithm for OSLOG by using an iterated prior and with-
out considering any hierarchical representation.

2. formulation of an upper bound on the cumulative square loss of the Online
SLOG algorithm.

The organisation of the paper is as follows. The next section introduces the
derivation of OSLOG. Section 3 analyses the performance guarantee. Section 4
concludes the paper.

2 Derivation of OSLOG

We consider the online protocol which assumes that at each trial the input
arrives. Then, the algorithm predicts the outcome before the actual outcome is
revealed and adjustment of the weights is conducted. We assume the following
prior on weights:

p(w) =
(aη

2

)n

exp
(

−aηw′D−1

wt−1
w
)

(2)

where Dwt−1
denotes the diagonal matrix such that the diagonal vector contains

the absolute value of each element of the weight vector obtained at the previ-
ous trial. The selected prior distribution on weights is inspired by the Laplace

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

432



0 20 40 60 80 100 120 140 160 180 200 220

0

0.2

0.4

0.6

0.8

1

trial

||D
−

1 2

w
t
−

1
w
||2 2

Fig. 1: L1−norm approximation.

distribution which is written as [18]:

1

2τ
e||w||1/τ , τ =

1

λ
, λ > 0

In this paper, we consider: τ = 1

aη , where scalar η = 1

2σ2 such that a, η > 0.

Also, we replace ||w||1 by ||D− 1

2

wt−1
w||2

2
. Clearly in the expression ||D− 1

2

wt−1
w||2

2
we

need a restriction on weights. So, at trial T −1 absolute value of each element of
the weight vector should not to be zero in (2). Despite this restriction Figure 1
shows reasonable similarity to ||w||1. A visible difference is near the kink point
(100, 0). To overcome the issue of the situation where R

0
, we present the following

Lemma:

Lemma 1. For all t = 1, 2, ...

(

aD−1

wt−1
+

t
∑

s=1

xsx
′
s

)−1

= D
1

2

wt−1

(

aI+D
1

2

wt−1

(

t
∑

s=1

xsx
′
s

)

D
1

2

wt−1

)−1

D
1

2

wt−1

Theorem 1. If an algorithm follows a Bayesian strategy with Gaussian likeli-
hood and prior (2) such that weights at trial T − 1 are not null, w0 is initialised
uniformly and a > 0, then the predictive distribution is expressed as:

N
(

(

∑T−1

t=1
xtyt

)′ (
∑T−1

t=1
xtx

′
t + aD−1

wt−1

)−1

xT ,
1

2σ2xT

(

∑T−1

t=1
xtx

′
t + aD−1

wt−1

)−1

xT

)
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By applying Lemma 1 we lift the condition on weights and get the following
explicit algorithm for OSLOG. We place the absolute value of each element of
the weight vector on the diagonal of a matrix that has all off diagonal entries zero
and in the algorithm we denote it as: diag(|wt−1,1|, ..., |wt−1,n|) = diag(abs(w)).

Algorithm 1: OSLOG

Initialise: a > 0,M = 0n×n, b = 0n×1 and w = 1 ∈ R
n×1

FOR t = 1, 2, ...
(1) Read xt ∈ R

n

(2) Dwt−1
= diag(abs(w))

(3) γ = w′xt

(4) M = M + xtx
′
t

(5) A−1 =
√

Dwt−1

(

aI+
√

Dwt−1
M
√

Dwt−1

)−1√

Dwt−1

(6) Read yt ∈ R

(7) b = b+ ytxt

(8) w = A−1b

END FOR

Remark 1. In Algorithm 1 line 8 can be allowed to make passes until conver-
gence to have higher level of sparsity. We know from the sequential compactness
theorem (see for example [8]) that any closed and bounded sequence in Euclidean
space converges. Further details can be found in [1, 14, 17]. Theorem 8 in
[12] shows that SLOG converges to the LASSO solution under some regularity
conditions.

In Algorithm 1, the matrix A−1 is symmetric and positive definite, so its in-
verse exists at each trial. At each trial, the system of equations solved is unique
without making stochastic assumptions. However, calculating the posterior pre-
dictive distribution involves measures and integrals. Therefore for measure, we
assume consistency with the topological space. It is also assumed that the pre-
diction space is a topological space equipped with σ−algebra, and the set of
parameter w ∈ Θ = R

n is equipped with σ− algebra1.

3 Analysis of the performance guarantee

The goal is to formulate the upper bound on the cumulative square loss. Theo-
rem 1 implies that the prediction of Algorithm 1 corresponds to the mean of the
posterior predictive parameter w weighted by the posterior probability [13]. In-
terestingly, Kivinen and Warmuth [7] showed that the likelihood of the weighted
average can be interpreted as the loss of the Online Bayesian Strategy.

1This is a mild assumption which is always satisfied in practice. Not making such assump-
tion will lead to counter intuitive results such as Banach-Tarski paradox. For details see, for
example, [17]
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In the following, We denote the cumulative squared loss
∑T

t=1
(yt − w′xt)

2

by Lw
T and set AT to be

(

∑T
t=1

xtx
′
t + aD−1

wt−1

)

.

Theorem 2. For any trial t = 1, 2, ..., T , any a > 0 the following holds:

LT (OSLOG) ≤ inf
w

(

Lw
T + a||D− 1

2

wt−1
w||2

2

)

+ Y 2

(

2n ln

(

16Y 2

a
√
π

)

+ ln det
AT

8Y 2

)

(3)
where yt ∈ [−Y, Y ] such that Y ≥ 0 and absolute value of each element of the
weight vector at T − 1 is not zero.

We assume that ||xt||∞ ≤ R and C ≤ ||w||1 ≤ P for t = 1, 2, ..., T and denote
elements of diagonal matrix Dwt−1

by dij . Now we upper bound the following
expression:

ln detAT = ln det

(

aD−1

wt−1
+

T
∑

t=1

xtx
′
t

)

we use Beckenbach and Bellman [3] Theorem 7 (in Chapter 2) to bound the
determinant i.e.:

ln detAT ≤ ln
n
∏

i=1

(

a

dii
+

T
∑

t=1

(xt,i)
2

)

≤
n
∑

i=1

ln
(

aC−1 + TR2
)

ln detAT ≤ n ln
(

aC−1 + TR2
)

= n ln
a+ CTR2

C
(4)

Corollary 1. For any trial t = 1, 2, ..., T and any a > 0 such that ||xt||∞ ≤ R

and C ≤ ||w||1 ≤ P , the following holds:

LT (OSLOG) ≤ inf
w

(

Lw
T + a||D− 1

2

wt−1
w||2

2

)

+ nY 2 ln

(

32Y 2(a+ CTR2)

a2Cπ

)

for yt ∈ [−Y, Y ], such that Y ≥ 0 and C 6= 0.

4 Conclusion

We proposed an online algorithm for SLOG regression and presented its perfor-
mance guarantee (without making any distributional assumptions) with regret
bounded by a logarithmic function of T . Our online formulation of SLOG does
not require a hierarchical structure. Another fundamental difference in SLOG
and OSLOG is that SLOG requires σ2 → 0, while OSLOG requires σ2 = 4Y 2.
In this sense, OSLOG could be considered as an online variant of the Bayesian
Lasso with known fixed σ2.

In the future2, we will carry the empirical evaluation of OSLOG. Also, we
will explore other loss functions. A more interesting direction is to inspect the
tightness of the given guarantee.

2Proofs will be given in the extended version of the paper.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

435



References

[1] Stephen Abbott. Understanding analysis. Springer, 2001.

[2] David F Andrews and Colin L Mallows. Scale mixtures of normal distributions. Journal
of the Royal Statistical Society. Series B (Methodological), pages 99–102, 1974.

[3] Edwin F Beckenbach and Richard Bellman. Inequalities, volume 30. Springer Science &
Business Media, 2012.

[4] John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10(Dec):2899–2934, 2009.
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