
Graph generation by sequential edge prediction

Davide Bacciu1, Alessio Micheli1, Marco Podda1 ∗

1 University of Pisa - Dept. of Computer Science
Largo Bruno Pontecorvo 3, Pisa - Italy

Abstract. Graph generation with Machine Learning models is a chal-
lenging problem with applications in various research fields. Here, we
propose a recurrent Deep Learning based model to generate graphs by
learning to predict their ordered edge sequence. Despite its simplicity, our
experiments on a wide range of datasets show that our approach is able to
generate graphs originating from very different distributions, outperform-
ing canonical graph generative models from graph theory, and reaching
performances comparable to the current state of the art on graph genera-
tion.

1 Introduction

Graphs allow to efficiently store and access relational data: their use is strategi-
cal to encode information in domains such as Bioinformatics, Cheminformatics,
Natural Language Processing, and many more. Given their superior expressive-
ness with respect to ”flat” vectorial data, many Machine Learning models accept
graphs as inputs, to create richer and more informed predictors on a variety of
tasks [1]. One learning problem of particular interest is how to instruct Machine
Learning models to generate graphs from arbitrary distributions. This problem
is inherently hard for a number of reasons: a) the space of graphs is exponential
(for a fixed number of nodes N there are 2N(N−1) possible undirected graphs),
meaning that there are severe limitations in how much of it can be explored when
searching for a solution; b) graphs are discrete objects, hence learning algorithms
like back-propagation (which require the objective function to be continuously
differentiable) are not directly applicable; c) aside from few restricted domains,
there is often no clear-cut way to evaluate the quality of a sample with respect
to the unknown graph distribution. In this paper, we propose an approach to
address these challenges. Instead of working directly in graph space, we cast
the generative process of a graph as a sequential one, where we learn to predict
its ordered edge sequence. This has two benefits: by superimposing an order on
the generative process, we restrict the number of possible outcomes and make
the problem tractable; furthermore, moving to sequences domain allows us to
employ reliable Recurrent Neural Network architectures (often included in the
Deep Learning framework) for learning and generation. We implemented and
tested our model in a wide range of heterogeneous graph datasets, outperform-
ing classical baselines such as the Erdös-Rényi and the Barabási-Albert models
(sometimes by several orders of magnitude), reaching competitive results with
respect to the current state of the art on the generative task.

∗This work has been supported by the Italian Ministry of Education, University, and Re-
search (MIUR) under project SIR 2014 LIST-IT (grant n. RBSI14STDE).

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

95

2 Model

A graph is a pair G = 〈V,E〉, where V = {v0, v1, . . . , vn} is the set of vertices
(or nodes) and E = {(v, u) | v, u ∈ V } is a set of edges (or links). We define
|V | = N and |E| = M . Let us assume that the graphs we deal with are fully
connected, undirected, i.e. (v, u) = (u, v), ∀v, u ∈ V , and do not contain self-
loops, i.e. edges of the form (v, v). We furthermore assume the existence of a
bijective labeling function π : V → N0 that assigns a non-negative integer to
each node in the graph following some ordering criteria. If π is given, we can
represent a graph G with its ordered edge sequence, defined as:

SG = s1, . . . , sM , with si = (xi, yi), where (π−1(x), π−1(y)) ∈ E.

Moreover, we impose si ≤ si+1 iff xi < xi+1 or (xi = xi+1 and yi < yi+1),
i.e. SG is sorted in ascending lexicographical order. Clearly, the ordered edge
sequence of a graph is dependent on the particular choice of π; that is, different
node orderings lead to different edge sequences. We discuss how π can be chosen
in Section 3.

To generate a graph, one would usually learn its probability distribution
P (G) from data, and sample from it. Both learning and sampling are hard since
graph are invariant to node permutations, which makes the space of graphs
exponential. Instead, we aim at solving an alternative problem: learning the
ordered edge sequence of a graph or, in other terms, maximizing the ordered
edge sequence probabilities of the graphs in a dataset:

maxP (SG) =

M∏
i=1

P (si+1 | si).

In the above formula, SG is the ordered edge sequence, si is its i-th element, and
the two components of the pair (x, y) are the integers assigned to the nodes by
π, that identify the generic edge in G. We propose to learn this probability with
a sequence of two Recurrent Neural Networks: one learns P (xi+1 | xi), i.e. the
sequence of the first elements of the pairs in SG, and another that, given the latter
sequence, learns P (yi | xi) (the second element of the pair). Intuitively, the first
Neural Network learns which node the next pair in the sequence should contain
as its first component; its hidden state updates a latent representation of the
neighborhood of the input node. The second network learns to predict adjacent
nodes; its hidden state keeps track of the graph connectivity as nodes are added.
We implemented the architecture of the two networks using Gated Recurrent
Units [2] and softmax outputs (where the output classes are the identifiers of
the nodes).

Figure 1 provides an insight on the inner workings of the model. During
training, we start from a graph, whose nodes are first labelled according to the
node ordering procedure. The second step consists in extracting the ordered
edge sequence. The first components of the ordered edge sequence are fed to
the first network, which predicts the next node identifier in the sequence (using

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

96

teacher forcing). The sequence output of the first network is then fed as input
to the second network which, for each node identifier, predicts the identifier of
its adjacent node. The whole architecture is trained to minimize the categorical
cross-entropy between the ground truth and the desired network outputs.

The inference phase starts with the first network, whose softmax layers are
sampled sequentially to produce a sequence of node identifiers. The generated
sequence becomes the input for the second network, which again predicts all
the needed node adjacencies. The outputs of the two networks are finally com-
bined into a novel ordered edge sequence, from which the new graph can be
reconstructed.

Fig. 1: Proposed model for learning graph generation. In the ordered edge
sequence on the left, underlined nodes indicate the desired output for the first
network; doubly underlined nodes indicate the desired output for the second
network. Upward arrows describe data flow during training (start from a graph,
end up with the network output). Downward arrows describe data flow during
inference (start from the network, end up with a novel graph). Dashed lines
indicate a sampling procedure (used only during inference).

3 Experiments

Following, we review our workflow to evaluate the goodness of our architecture:
in particular, we briefly describe the datasets used for learning, the baselines we
compared to, the metric of choice to evaluate the goodness of the samples and
some details of the experimental setup.

Datasets: our model was trained on a set of five heterogeneous graph
datasets. Each one represents different graph distributions that model very com-
plex node/edges dependencies: Ladders and Community are synthetic datasets
of ladder graphs and two-community (i.e. graphs composed of two densely con-
nected components weakly connected among themselves) respectively; Ego is a

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

97

Name # of graphs
Min.
nodes

Max.
nodes

Avg.
nodes

Avg.
edges

Training/Test
split

Ladders 45 10 98 54.00 79.00 45/45

Community 200 16 24 19.99 55.85 150/50

Ego 200 16 32 22.45 31.41 150/50

Enzymes [4] 350 15 40 27.96 55.47 200/150

Proteins [4] 500 15 40 26.17 49.90 350/150

Table 1: Statistics of datasets used in the experiments.

subset of ego-networks extracted from the Citeseer dataset [3]; Enzymes and Pro-
teins are subsets of real-world graph datasets representing enzymes and proteins
respectively. Dataset statistics are presented in Table 1.

Choice of π: as said before, the choice of the ordered labelling function
π is crucial, because it defines how the ordered edge sequence is generated.
However, while a notion of ordering can be assumed for certain types of graphs
such as molecules (where nodes can be labelled in sequential order following
the SMILES [5] encoding), finding such a function is challenging for graphs
like social networks, which have no clear notion of ”what comes first”. Thus, for
graphs in the Ladders, Ego and Community datasets, we employed the following
procedure: a) take one node v at random in the graph; b) construct a BFS tree
of the graph rooted at v; c) label the nodes in the graph according to the order of
visit of the tree. While this algorithm effectively creates orderings that are not
consistent across graphs, we found no observable impact in terms of performances
in our experiments. However, we are aware that this can be a bias, whose effects
can be further investigated and eventually relaxed in future works.

Baselines: to get a broader sense on how well our model performs, we
compared its performances to a total of three baseline models. Two of them
are classical generative models of graphs coming from graph theory literature:
the Erdös-Rényi [6] (E-R) and the Barabási-Albert [7] (B-A) models. We also
compared to a Deep Learning based approach named GraphRNN (GRNN) model
developed by You et al. [8]. In early experiments, we also evaluated other Deep
Learning based approaches such as [9] and [10], which however did not give
satisfactory results and were thus discarded.

Metrics: the quality of the generated graphs was assessed by computing
the Kullback-Leibler Divergence [11] (KL-D) of graph statistics distributions
between graphs in the test set and graphs generated by the models. The statistics
of choice were degree distribution (DD) and clustering coefficient (CC). Since
the KL-D is defined for probability distributions, we constructed a probability
vector for each of the two statistics using the following procedure: a) for each
graph, compute its statistics vector; b) 0-pad the vector to reach the size of
the largest statistics vector in the dataset; c) sum up each padded vector and
normalize. Since the CC is continuous, we discretized it using a histogram with
100 bins.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

98

Ladders Community Ego

Model DD CC DD CC DD CC

E-R 1.1414 0.0000 0.0480 0.9827 0.4997 0.9896

B-A 1.3082 0.0000 0.2352 0.4050 0.0766 0.4995

GRNN 0.0148 0.0001 0.0113 0.0463 0.0598 0.1767

Ours 0.0092 0.0000 0.0115 0.0815 0.0381 0.1071

Enzymes Proteins

Model DD CC DD CC

E-R 0.2352 1.2527 0.3089 1.484

B-A 0.5839 0.8423 0.7523 1.2099

GRNN 0.0410 0.0604 0.0176 0.0254

Ours 0.0220 0.0222 0.0450 0.0535

Table 2: KL-divergence between samples generated by the models and samples in
the test set, evaluated on their degree distribution (DD) and clustering coefficient
(CC). Best performances are in bold.

Experimental Setup: data was split between training and test as described
in Table 1. At inference time, we sampled 1000 graphs from each trained model,
and use them with the test set to calculate the corresponding performance met-
ric. The GRNN model used 3 hidden layers with 64 recurrent units each, while
our model used 2 hidden layers with 128 units each. Both models were trained
for 1000 epochs, and we report negligible differences in terms of training time
(for the Enzymes dataset, GRNN training took 2h.55m approximately, while
training our model took 2h.45m approximately). Optimization was carried out
with the Adam [12] optimizer, setting the learning rate to 0.003 for GRNN (with
learning rate annealing) and 0.001 for our model. The parameters of the E-R
and B-A models were estimated through maximum likelihood.

4 Results and Discussion

Table 2 shows the results of our experiments: our model obtains the best KL-D
in three out of five datasets, and performs comparably to the GRNN model in the
remaining two. It can be seen how both our model and the GRNN significantly
outperform classical generative models in every dataset, sometimes (e.g. Ladders
DD, Enzymes CC) by several orders of magnitude. Interestingly, for each dataset
the best performing models score better in both statistics under consideration.
Poor performances of the E-R and B-A models were expected since they are not
designed to model real-world graphs, and are able to maintain only predefined
properties during generation. Both our model and GRNN, instead, learn the
graph distribution of interest adaptively, providing the necessary flexibility to

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

99

capture complex dependencies directly from data. Still, there is work to be
done, in particular to remove possible biases in both how the learning phase is
conceived and how the generation is carried on. In conclusion, we developed a
conceptually simple, yet powerful, generative model for graph generation which
approximates its ordered edge sequence via Recurrent Neural Networks, which
is capable of reaching performances comparable to state of the art in the task.

References

[1] Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual graph markov model:
A deep and generative approach to graph processing. In Proc. of the 35th International
Conference on Machine Learning (ICML 2018), 2018.

[2] Kyunghyun Cho, Bart van Merriënboer, ÇaÄlar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, EMNLP ’14, pages
1724–1734. Association for Computational Linguistics, 2014.

[3] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. CiteSeer: An Automatic Citation
Indexing System. In Proceedings of the Third ACM Conference on Digital Libraries, DL
’98, pages 89–98. ACM, 1998.

[4] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor
Huhn, and Dietmar Schomburg. BRENDA, the enzyme database: Updates and major
new developments. Nucleic acids research, 32:D431–3, 2004.

[5] David Weininger, Arthur Weininger, and Joseph L. Weininger. SMILES. 2. Algorithm for
generation of unique SMILES notation. Journal of Chemical Information and Computer
Sciences, 29(2):97–101, 1989.

[6] P. Erdös and A. Rényi. On Random Graphs I. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

[7] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Networks.
Science, 286:509–512, 1999.

[8] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. GraphRNN:
Generating Realistic Graphs with Deep Auto-regressive Models. In ICML, volume 80 of
JMLR Workshop and Conference Proceedings, pages 5694–5703. JMLR.org, 2018.

[9] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning Deep
Generative Models of Graphs. CoRR, abs/1803.03324, 2018.

[10] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In Artificial Neural Networks and Machine Learning â
ICANN 2018 â Part 1, volume 11139 of Lecture Notes in Computer Science, pages 412–
422. Springer, 2018.

[11] Solomon Kullback and Richard A. Leibler. On Information and Sufficiency. Ann. Math.
Statist., 22(1):79–86, 1951.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
Proceedings of the 3rd International Conference on Learning Representations, ICLR ’15,
2015.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

100

