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Abstract. Many machine learning models are sensitive to adversarial

input, meaning that very small but carefully designed noise added to cor-

rectly classified examples may lead to misclassification. The reasons for

this are still poorly understood, even in the simple case of linear models.

Here, we study linear models and offer a number of novel insights. We focus

on the effect of regularization and dimensionality. We show that in very

high dimensions adversarial robustness is inherently very low due to some

mathematical properties of high-dimensional spaces that have received lit-

tle attention so far. We also demonstrate that—although regularization

may help—adversarial robustness is harder to achieve than high accuracy

during the learning process. This is typically overlooked when researchers

set optimization meta-parameters.

1 Introduction

The high sensitivity of most machine learning models to adversarial examples
was pointed out not long ago [1, 2]. A number of methods have been proposed to
create better adversarial examples [3, 4] as well as to provide defense mechanisms
against these [5, 6].

Here, we focus on the adversarial robustness of linear machine learning mod-
els. The theoretical basis of the problem is still lacking. Some results are known
e.g. Fawzi et al. [7] offer bounds on robustness for the linear case based on the
distance of classes, but their study is orthogonal to ours. Goodfellow at al. [1]
suggested that higher-dimensional linear models are more sensitive because the
same amount of noise in each dimension can result in a larger Euclidean distance
from the point simply due to the larger number of dimensions, provided the sign
of the noise is the same as the sign of the value in the given dimension. However,
we argue that the Euclidean distance is of limited interest simply because classes
and data points in general will also have larger Euclidean distances from each
other in higher dimensions.

In this paper, we propose novel insights, which provide an alternative expla-
nation to the adversarial sensitivity of linear models. We focus on the effect of
regularization and dimensionality. We will show that in very high dimensions
adversarial robustness is inherently very low due to the fact that a random hy-
perplane is very close to any data point. This property which has received little
attention so far, is highly counter-intuitive.
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1.2.1-NKP-2018-00008) and by the Hungarian Ministry of Human Capacities (grant 20391-
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We also point out that regularization has a profound effect on adversarial
robustness. From the point of view of prediction accuracy and adversarial ro-
bustness the amount of regularization required will be different. We should add
that the current practice of setting meta-parameters based only on prediction
accuracy might result in very high sensitivity to adversarial examples. This is
because the convergence of robustness is much slower than that of accuracy and
because robustness requires stronger regularization.

We shall also provide a thorough experimental evaluation of our claims where
we study the effect of dimensionality, regularization, and the interaction of these
two factors. In this evaluation, we will use artificial datasets as well as a subset
of the MNIST dataset.

2 Linear Models in High Dimensional Spaces

We are given a set of training instances of the form (x, y), x ∈ R
n, y ∈ {0, 1},

and we are looking for a hyperplane Pl(w) = {z|〈w, z〉 = 0} defined by w ∈ R
n

such that Pl(w) separates the data points with different labels. This plane is
typically found via optimizing a loss function based on the examples and w.
Model optimization typically starts with a random initial model, or, equiva-
lently, an initial model that is independent of the optimal model. The following
result implies that such a random model will be extremely close to any point
in expectation, hence, it should also be very close to each instance. This highly
unintuitive property implies that a random plane has a very high sensitivity to
adversarial examples.

Proposition. Let w ∈ R
n define a random plane Pl(w) = {z|〈w, z〉 = 0}. Let

wi (i = 1, . . . , n) be i.i.d. random variables with P (wi = −1) = P (wi = 1) = 0.5.
Let d(1, P l(w)) denote the distance between Pl(w) and the point 1 = (1, . . . , 1).
Then we have limn→∞ E(d(1, P l(w))) = O(1).

Proof. We have d(1, P l(w)) = |〈1, w〉|/ ‖w‖
2
= 1√

n
|∑n

i=1
wi|. Also, we have

∑
n

i=1
wi →

√
nN (0, σ2) due to the central limit theorem, where σ2 = 0.25 is the

variance of wi. The mean of |N (0, σ2)| is finite and it does not depend on n,
so it is O(1); thus E( 1√

n
|∑n

i=1
wi|) → 1√

n

√
nO(1) = O(1), which completes the

proof.

Note that there exists a plane for which the distance from 1 is
√
n = O(

√
n),

namely when w = 1. However, according to the result above, a random plane
is of distance O(1) in expectation. The result is not specific to 1 because it
is invariant to rotation. The striking consequence is that a random plane will
result in a high sensitivity to adversarial examples, no matter how the classes

are positioned. This means that the optimal plane in terms of distance is very
special, regardless of the difficulty of the classification problem, so we suspect
that this very special plane is hard to find during optimization. Our experimental
results are consistent with this view.
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3 Linear Models and Regularization

Here, we argue that regularization is closely related to the geometric properties
outlined in Section 2. Assuming n examples (xi, yi), xi ∈ R

n, yi ∈ {0, 1}, i =
1, . . . , n, let us now consider logistic regression where the goal is to approximate

the data using the logistic function y ≈ σ(wT x + b) = 1/(1 + e−w
T
x+b). This

will lead to a linear separator defined by w and b and a logistic probability
approximation as a function of the distance from the separating hyperplane.

The loss function typically used to find the best model (that is, w and b)
is the negative log likelihood function L(w, b) = −∑n

i=1
yi · log(σ(xi;w, b)) +

(1 − yi) · log(1 − σ(xi;w, b)). To handle noisy data, it is customary to add
a regularization term to the loss function. Here we focus on the so-called L2
regularization: L(w, b) + α‖w‖22, where α is the regularization coefficient.

We would like to study the effect of regularization from the point of view
of adversarial robustness. L2 regularization results in preventing the length of
w from growing indefinitely. This in turn results in preventing the derivative
of the model from growing indefinitely. To see this, consider the derivative
σ(a ·x)′ = aσ(a ·x)σ(1− a ·x). Clearly, increasing the length of w will make the
logistic curve steeper. Without regularization, the model in practice becomes a
step function so the loss function will simply attempt to minimize the number
of misclassified examples. With regularization, all the examples will affect the
orientation of the separating hyperplane.

This means that if regularization is not strong enough then noisy examples
will have too much influence, forcing the hyperplane out of optimal position,
which in turn will result in very high adversarial sensitivity according to the
proposition provided in Section 2. Accordingly, we expect that for optimal ro-
bustness one will have to use quite strong regularization.

4 Experimental Results

In order to evaluate the effect of dimensionality and regularization, we carried
out a systematic experimental study. Now let us describe the experimental setup
and the methodology in detail.

4.1 Binary Classification Problems

We will use two binary classification problems that are described below. The
first dataset is a subset of the MNIST dataset [8] that includes two classes: 3 and
7 (also used by the authors of [1]). We will refer to this dataset as MNIST-73.
It contains about 6000 samples per class. The raw pixel values were normalized
to the range [0, 1].

We will also use an artificial dataset called 2-Gauss. The two classes are
defined by the distributions N (1,Σ) and N (0,Σ), where 0 is the origin and Σ is
the diagonal matrix 4I, hence the variance is σ2 = 4, which is the same for each
dimension. Note that the Euclidean distance of the class centers is

√
n, where n

is the dimension. Here, we sampled 6000 instances per class.
For each dataset, 100/6 ≈ 16.7% of the data was separated to form a test

set. In the preprocessing step, the training data values were translated so as to
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have a zero mean. The mean was estimated over the training set, and the test
set was translated as well using this value.

To examine the effect of the dimensionality on adversarial robustness, we
will use a range of input dimensions. The dataset 2-Gauss can naturally be
generated in any dimensions. The MNIST-73 examples were scaled using im-
age processing algorithms. The original dimension of the images was 28 × 28.
We performed preliminary tests with different interpolation methods (cubic, lin-
ear, nearest-neighbor) that gave similar results. Here, we applied the nearest-
neighbor method.

4.2 Methodology

Our two main measures of interest are accuracy (i.e. the proportion of correctly
classified examples) and the distance of the examples from the hyperplane nor-
malized by the dimension

√
n. The latter measure characterizes the sensitivity

to adversarial examples; namely the smaller the distance, the higher the sensi-
tivity. Here, we normalize the distance by

√
n for two reasons. First, it is more

meaningful to measure sensitivity relative to the distance of the two classes, and
the distance of the two classes grows with

√
n. Second, in the case of image

data, this also means that we characterize the sensitivity of each pixel, which is
a more natural measure. We will call this measure the normalized distance.

We used ADAM [9] as our optimizer with a minibatch size of 32. Since
we were interested in the actual optimal model (to avoid artifacts due to early
stopping) we ran the algorithm with an extremely small stopping threshold of
10−10. We will also include results with a 10−4 stopping threshold that is often
used as a default. We can still study the effect of early stopping, since we record
the convergence history as well. In our plots, we will indicate the regularization
coefficient used in the case of n = 28×28, however, for different dimensionalities,
the regularization value was scaled proportional to n to make the strength of
regularization in different dimensions comparable.

4.3 Results

Figure 1 shows some of the results of our experiments. The MNIST-73 results
indicate that normalized distance and accuracy behave very differently in terms
of regularization. Most importantly, one is normally interested in prediction
performance, and the meta-parameters optimal for that purpose perform rather
badly for adversarial robustness. To optimize the distance, it is good to have a
regularization coefficient that is as large as possible, whereas accuracy displays
a degrading trend with increased regularization. These observations hold true
regardless of the problem dimension. In other words, in each dimension we see
that they have almost the same values.

The 2-Gauss problem behaves slightly differently because no noisy examples
are added and because in high dimensions there is a wide linear separation mar-
gin between the classes and this grows with n. The optimal values for distance
and accuracy are found in almost every case. However, we noticed that for low
regularization values the optimizer struggles to find the optimum in high dimen-
sions. For no regularization, even the smaller stopping threshold is insufficient
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Fig. 1: Normalized distance and accuracy as a function of regularization coeffi-
cient and dimension for the MNIST-73 dataset (top) and the 2-Gauss dataset
(bottom), and stopping threshold 10−4 (left) and 10−10 (right).

to find the theoretically optimal model. This is because then the loss function
is extremely flat. This effect is closely related to the dimensionality n, and the
problem is more severe with larger values of n.

Let us also examine the dynamics of convergence during optimization, which
is shown in Figure 2. Clearly, the convergence of distance is significantly slower
than that of accuracy in each case. For the 2-Gauss problem, this effect is more
marked. With α = 10−4, due to the wide separation margin and relatively large
weights, the loss function practically vanishes and gives only a very weak signal
to the optimizer, while the accuracy attains its optimum quite quickly.

With the MNIST-73 dataset we see there is a local optimum for distance
when no regularization is applied. This is due to the length of the parameter
vector w gradually increasing. With the 2-Gauss dataset we have no noisy
examples that could make the model go in the wrong direction as w grows due
to the lack of regularization, so this effect is not so marked.

5 Conclusions

In this study, we demonstrated that even in the case of simple binary classifica-
tion problems with linear models, the adversarial problem is real and it strongly
depends on regularization and the less obvious properties of high-dimensional
spaces. We presented an experimental evaluation where we showed that the
optimal regularization strength is very different for adversarial robustness and
prediction accuracy, and that the convergence of adversarial robustness is much
slower than that of the accuracy metric. Also, in higher dimensions an overly
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Fig. 2: Convergence of normalized distance and accuracy in n = 28× 28 dimen-
sions for the MNIST-73 dataset (top) and the 2-Gauss dataset (bottom), with
regularization coefficient α = 10−4 (left) and α = 10−1 (right).

weak regularization setting might result in a significantly harder optimization
problem in some cases.
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