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Abstract. Stochastic Neighbor Embedding (SNE) and variants like
t-distributed SNE are popular methods of unsupervised dimensionality
reduction (DR) that deliver outstanding experimental results. Regular t-
SNE is often used to visualize data with class labels in colored scatterplots,
even if those labels are actually not involved in the DR process. This
paper proposes a modification of t-SNE that employs class labels to adjust
the widths of the Gaussian neighborhoods around each datum, instead of
deriving those from a perplexity set by the user. The widths are fixed
to concentrate a major fraction of the probability distribution around a
datum on neighbors with the same class. This tends to shrink the bulk of
the classes and to stretch their low-dimensional separation. Experimental
results show that the proposed class-aware t-SNE (cat-SNE) outperforms
regular t-SNE in KNN classification tasks carried out in the embedding.

1 Introduction

Dimensionality reduction (DR) [1] aims at producing relevant low-dimensional
(LD) representations of high-dimensional (HD) data sets. Relevance can cover
several aspects of data, such as the preservation of variance (in principal com-
ponent analysis, PCA), of pairwise distances (in stress-based multidimensional
scaling), of pairwise inner products between data mapped in a feature space
induced by a kernel which is either user-defined (kernel PCA) or data-driven
(locally linear embedding; Laplacian eigenmaps; maximum variance unfolding).

Recently, developments in DR have focused on the preservation of small
neighborhoods, with proxies like stochastic neighbor embedding (SNE) [2] and
its variants [3, 4, 5], including t-SNE [6]. The latter has become very popular due
to remarkable performances, especially on data exhibiting a clustered structure.
In experiments, the meaningfulness of the clusters in the LD space is often
visually assessed by considering data sets with class labels, which are expected
to correlate with the perceived clusters. Similarly, DR quality is sometimes
indirectly evaluated by measuring how accurately an embedding performs in
KNN classification tasks [3, 7]. In practice, though, t-SNE and most other SNE
variants reduce dimensionality in an unsupervised way, ignoring class labels that
might be available.
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This paper aims at explicitly accounting for class labels in t-SNE to improve
KNN accuracy in the LD embedding. For this purpose, we modify the t-SNE
adjustment of the individual radius of the normalized Gaussian neighborhood
around each datum. Instead of targeting a fixed neighborhood entropy, pro-
vided by the user through the perplexity, we adjust the neighborhood radius for
neighbors with the same class to cumulate a dominant fraction of the probabil-
ity distribution. This results in smaller HD neighborhoods near class boundaries
than in their bulk, and therefore tends to stretch the former and shrink the latter.

The rest of this paper is organized as follows. Section 2 briefly summarizes
related works. Section 3 is a reminder of regular t-SNE, while Section 4 details
cat-SNE, our proposed class-aware variant of t-SNE. Next, Section 5 describes
the quality assessment of DR, in both unsupervised and supervised settings.
Section 6 presents the experiments and discusses their results. Finally, Section 7
draws the conclusions and sketches some perspectives for future works.

2 Related works

Different approaches refine unsupervised DR algorithms to account for class
labels [8]. In particular, some studies feed DR methods with supervised HD
distances, leading to supervised versions of Isomap [9, 10] and NeRV [3]. A
preprocessing step hence deals with the classes, before DR. In contrast, linear
projections of HD data may maximize the accuracy either of a KNN classifier
in the LD space [11], or of a generative model of the labels given the LD points
[12]. The Hilbert-Schmidt independence criterion enables better relating the LD
coordinates with the classes in maximum variance unfolding [13]. Other studies
require class probabilities for each HD sample and seek for the LD space mini-
mizing their Kullback-Leibler (KL) divergence with LD probabilities induced by
an isotropic Gaussian mixture with one component per class [14]. Alternatively,
a SNE extension [15] suggests defining several HD neighborhood distributions
derived from both the HD coordinates and class information. Minimizing their
mismatch with LD neighborhood distributions enables tuning the embedding.

3 SNE and t-SNE

Let Ξ = [ξi]
N
i=1 denote a set of N points in a HD space (HDS) with M features.

Let X = [xi]
N
i=1 represent it in a P -dimensional space (LDS), P ≤ M . The

HD (LD) distance between the ith and jth points is denoted by δij (d ij). SNE
defines HD and LD similarities, for i ∈ I = {1, . . . ,N } and j ∈ I\{i} [2]:

σij =
exp

(
−πiδ

2
ij/2

)∑
k∈I\{i} exp

(
−πiδ

2
ik/2

) , sij =
exp

(
−d2

ij/2
)∑

k∈I\{i} exp
(
−d2

ik/2
) , σii = sii = 0.

The precision πi is set by binary search to fix the perplexity of the distribu-
tion [σij ; j ∈ I\{i}] to a user-defined soft neighborhood size K ?: πi such that
logK ? = −

∑
j∈I\{i} σij log σij . SNE then finds the LD positions by minimizing

the sum of the KL divergences between the HD and LD similarity distributions.
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Besides symmetrizing the similarities, t-SNE employs a Student t-distribution
with one degree of freedom in the LDS, mitigating the crowding problem [6]:

σij,t =
σij + σji

2N
, sij,t =

1(
1 + d2

ij

)∑
k∈I,l∈I\{k}

(
1 + d2

kl

)−1 , sii,t = 0.

The t-SNE cost function C t−SNE =
∑

i∈I,j∈I\{i} σij,t log (σij,t /sij,t ) remains as

in SNE. It is minimized by gradient descent, with iterates scaling inO
(
N 2
)

time.

4 Accounting for class labels in t-SNE

Let ci be the class associated with ξi. Let us next define a condition on the
weighted proportion ti of neighbors ξj sharing the same class as ξi, i.e.,

ti =
∑

j∈I\{i}|cj=ci
σij > θ , (1)

where ti ∈ [0, 1] as
∑

j∈I\{i} σij = 1, and hyper-parameter θ lies in [0.5, 1[ to en-

sure the majority of class ci. Precision πi is then minimized under condition (1),
ensuing in the largest neighborhood of ξi in which class ci remains dominant.
If no precision πi fulfills condition (1), for instance if ξi is an outlier drown in
another class than ci, then πi is set to maximize ti. Although a hyper-parameter
θ is introduced in (1), maximizing ti for all i ∈ I would induce unnecessary large
πi for i in class bulks, leading to class burstings in the LD space.

No other change is brought to t-SNE. The perplexity meta-parameter in t-
SNE is hence replaced with the threshold θ, between 0.5 (simple majority) and
1 (unanimity). This class-aware variant of t-SNE is coined as cat-SNE.

5 Quality assessment of dimensionality reduction

Some studies developed quality criteria for unsupervised DR, measuring the
HD neighborhood preservation in the LDS [16]. This principle is adopted in
several publications [3, 5]. Let νKi and nK

i denote the K nearest neighbor sets of
ξi and xi in the HDS and LDS, with QNX (K) =

∑
i∈I
∣∣νKi ∩ nK

i

∣∣ /(KN ) ∈ [0, 1]
measuring their average normalized agreement. As E [QNX (K)] = K/ (N − 1)
for random LD points, RNX (K) = ((N − 1)QNX (K)−K) /(N − 1−K) allows
comparing different neighborhood sizes [4]. It is often displayed with a log-scale
for K as closer neighbors typically prevail. The area under the resulting curve,

AUC [RNX (K)] =
(∑N−2

K=1 RNX (K)/K
)/(∑N−2

K=1K
−1
)

, lying in [−1, 1], grows

with DR quality, quantified at all scales with an emphasis on small ones.
When data come with class labels, unsupervised DR can also be assessed

by its performances in classification tasks, by reporting the accuracy of a KNN
classifier in the LD space [3, 7]. Following this line, we define the KNN gain as

GNN (K) =
1

N

∑
i∈I

∣∣{j ∈ nKi s.t. ci = cj
}∣∣− ∣∣{j ∈ νKi s.t. ci = cj

}∣∣
K

. (2)
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It averages the gain (or loss, if negative) of neighbors of the same class around
each point, after DR. Hence, a positive value correlates with likely improved
KNN classification performances. The KNN gain GNN (K) can also be displayed
w.r.t.K, with a log-scale forK. A global score summarizing the curve is provided

by its area AUC [GNN (K)] =
(∑N−2

K=1 GNN(K)/K
)/(∑N−2

K=1K
−1
)
∈ [−1, 1].

6 Experiments

The performances of t-SNE and cat-SNE are compared in terms of both HD
neighborhood preservation and KNN gain. The employed data sets include (1)
an origin-centered, unit-radius, spherical shell (N = 1500, M = 3) with class

labels defined as ci = 3 +
∑3

d=1 sign(ξdi), (2) the COIL-20 database (N = 1440,
M = 1282) containing images of 20 objects, interpreted as classes, under 72 pose
angles [17], (3) a subset of the MNIST handwritten digits (N = 1500, M = 282)
[18], with the 10 digits as classes, and (4) UCI Abalone database (N = 4177,
M = 8) in which the abalone sex defines classes [19]. Typical perplexities among
{8, 16, 32, 64}, from small to large, are used with t-SNE, while θ in cat-SNE
ranges from 0.5 to 0.9 with 0.1 step. Target dimension P is two for all data sets.

Figure 1 illustrates the results on all but Abalone database, due to space
limits. On all data sets, cat-SNE improves the KNN gain over t-SNE, especially
with large threshold θ. In particular, cat-SNE with θ = 0.9 is superior to t-SNE
according to GNN(K) for all K and data sets. Astonishing performances of cat-
SNE are also observed on Abalone data set w.r.t. t-SNE. Besides, the perplexity
maximizing AUC [GNN(K)] in t-SNE depends on the considered database.

In the LD embeddings, t-SNE tends to exaggerate clusters, including those
due to sampling, irrespective of class labels, like in the spherical manifold. In
contrast, cat-SNE keeps tight class bulks, magnifying only regions near or across
their separation, especially in the sphere and MNIST data sets. Indeed, con-
dition (1) is easily satisfied in the homogeneous center of the classes, enabling
to decrease the precisions πi of the corresponding HD data points, leading to
larger Gaussian neighborhoods. These are readily rendered in the LD space by
concentrating the classes, which slightly deteriorates the preservation of small
within-class neighborhoods, compared to t-SNE, as indicated by the RNX (K)
curves. On the other hand, class boundaries are magnified in LD, thanks to
larger precisions πi of the concerned ξi, with tighter Gaussian neighborhoods
in HD that get stretched in LD. This behavior enhances KNN classification
performances in the LD space, with high GNN (K) scores, and improves the re-
production of large neighborhoods, as suggested by the RNX (K) curves. Finally,
since the marker size in the embeddings is proportional to ti, small markers refer
to outliers with many HD neighbors from another class. They hence lie near the
LD class borders computed by cat-SNE, for instance in the MNIST data set.

7 Conclusion

This paper shows that regular, unsupervised t-SNE can be turned into a class-
aware embedding method, coined as cat-SNE. Class labels are accounted in the
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fitting of the bandwidths of the Gaussian neighborhoods around each datum, to
reach a specified proportion of neighbors with the same class as the considered
datum. Smaller bandwidths occur near class boundaries, which are thus magni-
fied in the embeddings. Experiments show that cat-SNE outperforms t-SNE in
KNN classification tasks based on the embeddings. Visually, cat-SNE tightens
the bulk of the classes and loosens their boundaries. Future perspectives aim at
extending these developments with learning anisotropic Mahalanobis distances
[11], and comparing cat-SNE with state-of-the-art supervised DR methods.
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Fig. 1: Results for Sphere, COIL-20, and MNIST (left to right). From top to
bottom: data illustrations, RNX (K) curves and AUC (in legend), GNN(K) and
AUC, embeddings with t-SNE and cat-SNE showing the highest AUC[GNN(K)].
Marker sizes in embeddings reflect ti in (1). For Abalone, AUC[GNN(K)] < 0
for t-SNE (all perplexities), while it ranges from 1.2 to 4.3 with cat-SNE.
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