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Abstract. A pressing research topic is to find ways to explain the de-
cisions of machine learning systems to end users, data officers, and other
stakeholders. These explanations must be understandable to human be-
ings. Much work in this field focuses on image classification, as the re-
quired explanations can rely on images, therefore making communication
relatively easy, and may take into account the image as a whole. Here,
we propose to exploit the representational power of sparse dictionaries to
determine image local properties that can be used as crucial ingredients
of humanly understandable explanations of classification decisions.

1 Introduction

Machine Learning (ML) techniques enable one to develop algorithmic systems
that learn from observations. Many ML techniques (e.g., Support Vector Ma-
chines (SVM) and Deep Neural Networks (DNN)) give rise to systems whose
behavior is often hard to interpret [1]. Although some ML techniques come
with reasonably interpretable mechanisms and Input/Output (I/O) relationships
(e.g., decision trees), this is not the case for a wide variety of ML systems, whose
processing and I/O relationships are often difficult to understand [2]. Various
senses of interpretability for learning systems have been distinguished and ana-
lyzed [3], and various approaches to overcoming their opaqueness are now being
pursued [4, 5]. For example, in [6] a series of techniques for the interpretation
of DNN are discussed, and in [7] a wide variety of motivations underlying inter-
pretability needs are examined, thereby refining the notion of interpretability in
ML systems. In the context of this multifaceted interpretability problem [8, 9],
we focus on the issue of what it is to explain the behavior of ML classification
systems for which only I/O relationships are accessible, i.e., the learning system
is seen as a black-box. In literature, this type of approach is known as model
agnostic [10].

Various model agnostic approaches have been developed to give global ex-
planations exhibiting a class prototype which the input data can be associated
to [4, 5, 8, 6]. These explanations are given in response to explanation requests
that are usually expressed as why-questions: “Why were input data x associ-
ated to class C?”. Specific why-questions which may arise in connection with
actual learning systems are : “Why was this loan application rejected?” and
“Why was this image classified as a fox?”. However, prototypes often make
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rather poor explanations available. For instance, if an image x is classified as
“fox”, the explanation provided by means of a fox-prototype is nothing more
than a “because it looks like this” explanation: one would not be put in the
position to understand what features (parts) of the prototype are associated to
what characteristics (parts) of x. In order to go beyond this impoverished level
of understanding, instead of merely giving the user a global explanation, one
might attempt to provide a local explanation, which highlights salient parts of
the input [10]

In this paper, we propose a model agnostic framework that returns local ex-
planations based on dictionaries of local and humanly interpretable elements of
the input. This framework can be functionally described in terms of a three-
entity model, composed of an Oracle (an ML system, e.g. a classifier), an Inter-
rogator raising explanations requests about the Oracle’s responses, and a Media-
tor helping the Interrogator to understand the answer given by the Oracle. The
Mediator plays a crucial explanatory role here, by advancing hypotheses on what
humanly interpretable elements are likely to have influenced the Oracle output.
More specifically, elements are computed which represent humanly interpretable
features of the input data, with the constraint that both prototypes and input
can be reconstructed as linear combinations of these elements. Thus, one can
establish meaningful associations between key features of the prototype and key
features of the input. To this end, we exploit the representational power of sparse
dictionaries learned from the data, where atoms of the dictionary selectively play
the role of humanly interpretable elements, insofar as they afford a local repre-
sentation of the data. Indeed, these techniques provide data representations that
are often found to be accessible to human interpretation [11]. The dictionaries
are obtained by a Non-negative Matrix Factorization (NMF) method [12, 2, 13],
and the explanation is determined using an Activation-Maximization (AM) [4, 8]
based technique, that we call Explanation Maximization.

The article is organized as follows: in Section 2 we present the overall archi-
tecture; experiments and results are discussed in Section 3, while Section 4 is
devoted to concluding remarks and future developments.

2 Proposed Approach

Given an oracle Ω, an input ~x and an Ω’s answer ĉ (regardless of whether it is
correct or not), we want to give an explanation of the answer provided by the
model Ω that is humanly interpretable.

As we want to obtain humanly interpretable elements which, combined to-
gether, can provide an acceptable explanation for the choice made by Ω, we
search for an explanation having the following qualitative properties: 1) the ex-
planation must be expressed in terms of a dictionary V whose elements (atoms)
are easily understandable by an interrogator; 2) the elements of the dictionary
V (have to represent “local properties” of the input ~x; 3) the explanation must
be composed by few dictionary elements.

We claim that considering as elements atoms of a sparse coding from a sparse
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dictionary, and using sparse coding methods together with an AM-like algorithm
we obtain explanations satisfying the properties described above.

2.1 Sparse Dictionary learning

The first step of the proposed approach consists in finding a “good” dictionary
V that can represent data in terms of humanly interpretable atoms.

Let us assume that we have a setD = {(~x(1), c(1)), (~x(2), c(2)). . . . , (~x(n), c(n))}
where each ~x(i) ∈ Rd is a column vector representing a data point, and c(i) ∈ C
its class. We arrange all ~x(i) s.t. c(i) = c in a matrix X(c) = (~x(i)). The
dictionary can be constructed following two different strategies: 1) one-for-all,
a single dictionary for all classes; 2) one-for-one, a different dictionary for each
class. The former strategy imposes to learn a single dictionary V ∈ Rd×k of
k atoms across multiple classes and an encoding H ∈ Rk×n s.t. X = V H + ε
where X = (X(1)|X(2)| . . . |X(|C|)) and ε is the error introduced by the coding.

Every column ~xi in X can be expressed as ~xi = V~hi with hi i−th column
of H. The latter strategy imposes to learn for each class c ∈ C a different

dictionary V (c) ∈ Rd×k(c)

of k(c) atoms and an encoding H(c) ∈ Rk(c)×n s.t.
X(c) = V (c)H(c) + ε where ε is the error introduced by the coding.

The dictionary forms (or the dictionaries form) the basis of our explanation
framework for an ML system. Using the one-for-all or the one-for-one approach
have different pros and cons. Intuitively, one-for-all gives a dictionary represent-
ing all data in an unsupervised manner. However, when data are too complex,
this may not be the best choice. The one-for-one approach may generate dictio-
naries that are narrowly restricted to a single classes, but this is not a problem for
our approach to explanation. In experiments we used both strategies, selecting
the more suitable strategy for the data set complexity.

We selected as dictionary learning algorithm an NMF scheme [2] with the
additional sparseness constraint proposed by [13]; this choice is motivated by
the fact that it respects our requirements described above, giving a “local” rep-
resentation of data, and non-negativity, that ensures only additive operations in
data representations, giving a better human understanding with respect to other
techniques. The sparsity level can be set using two parameters γ1 and γ2 which
control the sparsity on the dictionary and the encoding, respectively.

2.2 Explanation Maximization

Unlike traditional dictionary-based coding approaches, our main goal is not to
get an “accurate” representation of the input data, but to get a representation
that helps humans to understand the decision taken by a trained model. To
this aim, we modify the AM algorithm so that, instead of looking for the input
that just maximizes the answer of the model, it searches for the dictionary-based
encoding ~h that maximizes the answer and, at the same time, is sparse enough
but without being “too far” from the original input ~x. More formally, indicating
with Pr(ĉ|~x) the probability given by a learned model that input ~x belongs to
class ĉ ∈ C, V the chosen dictionary, S(·) a sparsity measure, the objective

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

497



Fig. 1: Visual explanations obtained on three samples from the MNIST (left) and Fashion-
Mnist (right) data sets correctly classified by the Oracle. In red are the meaningful parts
determined by the systems producing explanations. In green are the encodings of the input
image obtained from the sparse dictionary.

function that we optimise is

max
~h≥0

log Pr
(
ĉ|V~h

)
− λ1||V~h− ~x||2 + λ2S

(
~h
)

(1)

where λ1, λ2 are hyper-parameters regulating the input reconstruction and the
encoding sparsity level, respectively. The first regularization term leads the
algorithm to choose dictionary atoms that, with an appropriate encoding, form
a good representation of the input, while the second regularization term ensures
a certain sparsity degree, i.e., that only few atoms are used. The ~h ≥ 0 constraint
ensures that one has a purely additive encoding. Thus, each hi, ∀i.1 ≤ i ≤ d,
measures the “importance” of the i-th atom. Equation 1 is solved by using a
standard gradient ascent technique, together with a projection operator given
by [13] that ensures both sparsity and non-negativity.

3 Experimental Assessment

To test our framework, we chose as Oracle a convolutional neural network archi-
tecture, LeNet-5 [14], generally used for digit recognition as MNIST. We have
trained the network from scratch using two different datasets: MNIST [14],
obtaining an accuracy of 98.86% on the test set, and Fashion-MNIST [15], ob-
taining an accuracy of 91.43% on the test set. The training set is composed
of 50000 images, while the test set is composed of 10000 images; the model is
learned using the Adam algorithm [16].

NMF with sparseness constraints [13] is used to determine the dictionaries.
We set the number of atoms to 200, relying on PCA analysis which showed that
the first 100 principal components explain more than 95% of the data variance.
We construct different dictionaries with different sparsity values in the range
γ1, γ2 ∈ [0.6, 0.8] [13], then we choose the dictionaries having the best trade-off
between sparsity level and reconstruction error.

In our experiments we learn a single dictionary for all the 10 classes of the
MNIST data set, which is a relatively simple data set. For the Fashion-MNIST
data set, which is more complex, we opted for learning one dictionary for each
class. The dictionaries are determined by looking for a a good trade-off between
reconstruction error and sparsity level.
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The atoms forming our explanations are selected by taking those with larger
encoding values (i.e., those that are more “important” in the representation).
In figure 1 (left) we show the atoms forming the explanation on three inputs on
which the Oracle gave the correct answer. The chosen atoms seem to describe
well the visual impact of the input numbers, by providing elements that appear
to be discriminative, such as the curved elements that are present for “3” or
the straight lines for “7”. To probe empirically the impact of sparsity on this
representation, we performed the same experiment using a dictionary with a
very low sparsity (0.1), obtaining encondings without any preponderant value,
thereby making it difficult to select appropriate atoms for explanation.

For the Fashion-MNIST we found a specific dictionary for each class. Fur-
thermore, in the dictionary learning procedure, we set the sparsity in an exclusive
manner, i.e. γa 6= 0 ⇐⇒ γb = 0, ∀a, b ∈ {1, 2}. This choice is motivated by the
fact that having sparsity both on dictionary and encoding leads to poor atoms.
So, for each class, we construct different dictionaries for different values on γ1, γ2
and then we choose the one with a good trade off between reconstruction error
and sparsity level.

In figure 1 (right) we show the more “important” atoms obtained on three
input images, a female sandal and a shirt, all of them correctly classified by
the Oracle. Selecting the atoms with higher encoding values seems to give rise
to representative parts of the selected input, returning parts that can be easily
interpreted by an human interrogator (e.g., the raised sole for the female sandal
and the sleeves for the shirt). As for MNIST, we performed the same experiment
using a dictionary with low sparsity, ending up wuth results taht are difficult to
interpret.

4 Conclusions

We proposed a model-agnostic framework to explain the answers given by clas-
sification systems. To achieve this objective, we started by defining a general
explanation framework based on three entities: an Oracle (providing the answers
to explain), an Interrogator (posing explanation requests) and a Mediator (help-
ing Interrogator to interpret the Oracle’s decisions). We propose a Mediator
using known and established techniques of sparse dictionary learning, together
with Interpretability ML techniques, to give a humanly interpretable explanation
of a classification system outcomes. We tried our proposed approach by using
an NMF-based scheme as sparse dictionary learning technique. However, we ex-
pect that any other technique that meets the requirements outlined in Section 2
may be successfully used to instantiate the proposed framework. The results of
the experiments that we carried out are encouraging, insofar as the explanations
provided seem to be qualitatively significant. Nevertheless, more experiments
are necessary to probe the general interest of our approach to explanation. We
plan to perform both a quantitative assessment, to evaluate explanations by
techniques such as those proposed in [6], and a subjective quality assessment to
test how do humans perceive and interpret explanations of this kind.
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The proposed approach does not take so far into account factors such as the
internal structure of the dictionary used. Accordingly, the present work can be
extended by considering, for example, whether there are atoms that are suffi-
ciently “similar” to each other or whether the presence in the dictionary of atoms
which can be expressed as combinations of other atoms may affect the expla-
nations that are arrived at. Another interesting direction of research concerns
contrastive explanations, which enable one to answer “why not?” negative ques-
tions, by explaining why some given object was not given another classification,
differing from the classification that the Oracle actually provided.
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