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Rod. Washington Lúıs, Km 235 - Brazil

2University of California, Irvine - Dept. of Electrical Engineering and Computer
Science - 5200 Engineering Hall - United States of America

3Complutense University of Madrid - Dept of Computer Architecture and System
Engineering - Ciudad Universitaria, Plaza Ciencias - Spain

Abstract. This paper presents the design of a convolutional core that
utilizes an approximate log multiplier to significantly reduce the power
consumption of FPGA acceleration of convolutional neural networks. The
core also exploits FPGA reconfigurability as well as the parallelism and
input sharing opportunities in convolutional layers to minimize the costs.
The simulation results show reductions up to 78.19% of LUT usage and
60.54% of power consumption compared to the core that uses exact fixed-
point multiplier, while maintaining comparable accuracy on a subset of
MNIST dataset.

1 Introduction

Convolutional Neural Networks (CNN) have consistently evolved from simpler
LeNet for handwritten digit recognition [1] to larger, deeper networks that can
classify thousands of objects in large-scale, with the amount of computations
required for CNNs increasing accordingly. Thus, performing power-efficient in-
ference computations have become an important topic of research as datacenters
and embedded systems deploy these deep networks to provide services.

CNNs are computation-intensive as Convolutional Layers (ConvLayer) per-
form large amount of multiply-add operations across inputs, as demonstrated
by VGG-16 network that had 99.5% of all computations in the ConvLayers [2].
The computations in ConvLayers have regular pattern and can be scheduled
statically, thus presenting the opportunity for acceleration on FPGAs that have
massively parallel hardware with low-throughput memory. The large amount
of multiplication operations also makes it rewarding to reduce the cost through
approximate multiplication [3].

This paper presents a Convolutional Core (ConvCore) design for FPGA ac-
celerators that significantly improves power and resource usage by utilizing the
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approximate log multiplier presented in [4]. The multiplier is based on the al-
gorithm that converts multiplications into additions by performing approximate
logarithm, and is known to reduce the cost of multiplication significantly while
producing approximated outputs with low error. This paper improves upon the
multiplier to further reduce resource usage and power consumption by exploiting
FPGA reconfigurability as well as the parallelism and input sharing opportuni-
ties in ConvLayers.

2 Related Works

This work is based on the approximate log multiplier based on Mitchell’s al-
gorithm [4][5], that had many works on its implementations and improvements
[6][7][8]. Our work goes one level higher and implements a whole FPGA Con-
vCore with the log multiplication, further revealing additional opportunities for
optimization when performing CNN inferences. There are many other types of
approximate multipliers, but only [9], [3], [10], and [11] have been applied to
neural networks and none of them have been evaluated on a FPGA ConvCore.

As for FPGA accelerators for CNNs, there are many works such as [12], [13],
[2] among many others. Many of these works reduce the precision of numerical
representation to reduce the cost of implementation, however, the range and
precision required to maintain comparable accuracy depends on each network
and layer [14][12], and simply reducing the number of bits may not suffice as
networks become more complex.

Our approach to reduce costs differs from the prior works that we trade off
arithmetic accuracy through an approximation algorithm instead of reducing
precision. The previous paper [4] demonstrated that such approach was viable
for CNN inferences, and we apply the finding in the design of a FPGA ConvCore.

3 Design of the Convolutional Core

Currently, most current state-of-the-art accelerators implemented in ASICs such
as Google’s TPU [15] make use of systolic arrays for accelerating neural net-
works. However, due to the necessity of conversion from convolution to matrix
multiplication and the need of a high bandwidth memory, Systolic Arrays shows
unfeasible for FPGA implementation, making multiple accelerators such as [16]
implement a highly specific ConvCore for CNN acceleration.

Whereas each accelerator implements their own version of ConvCores based
on the network requirements, the ConvCore here proposed is a generalization
of the one proposed in [17]. This implementation of the ConvCore, as seen in
Figure 1, uses registers for emulating the convolution window throughout the
input feature, resulting in a ConvCore that is highly specific for convolutions
and scalable for different kernel filter and input feature sizes.

The weight storage depicted in Figure 1 is a FIFO that receives all weights
from memory and saves them in registers, which are later indexed to each mul-
tiplier for the rest of the convolution. Due to reconfiguration, the weights are
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Fig. 1: ConvCore of 3x3 Filter Size

able to be saved in a ROM inside the FPGA, thus removing the overhead of
communication between the host processor and FPGA for weight loading.

4 Multiple Convolutional Cores with Reduced
Mitchell’s Approximate Log Multiplier

Due to the ConvCore capacity of running multiple instances in parallel, with
nokernels being a divisor of the number of kernels of a ConvLayer, nokernels
ConvCores could be run in parallel with minimal scheduling. This allows the
increase of the throughput by nokernels-fold when compared to a single Con-
vCore, thus granting the usage of the ConvCore in a wide range of FPGAs with
different resource numbers.

Using as base the multiplier proposed in [4] and taking into account the char-
acteristics of the previously proposed ConvCore, a Reduced Log Approximate
Multiplier (RMitch-w) is proposed. The main characteristic of RMitch-w is the
removal of the encoding process of Mitch-w, moving it to a separate module
called Feature Extractor, as shown in Figure 2b.

As depicted in Figure 1, the ConvCore structure allows the removal of redun-
dancy in the multipliers due to input sharing, resulting in Figure 2a. Whereas
in the Mitch-w version each multiplier received the input and encoded it, the
RMitch-w receives a tuple (A[0], A[n−1], opA[log2 n+w−2 : 0]) of size log2 n+
w+1 bits from a global Feature Extractor and a previously-encoded weight from
the weight storage in the same tuple structure.

Before synthesis, all of the network’s weights are converted to the tuple struc-
ture through a SystemVerilog testbench and saved to a COE file for later use in
the FPGA’s ROM, resulting in a reduction of approximately 60% of LUT usage
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(a) Reduced Multiplier (b) Feature Extractor

Fig. 2: Reduced Customizable Log Approximate Multiplier, RMitch-w

in each multiplier.
Another result of the prior encoding of the weights is a reduction of the

memory footprint needed for storing the weights. For instance, when using
AlexNet [18] (approx. 3.7 million parameters in ConvLayers) with RMitch-w4
32 bit multiplier, the memory footprint required for the ConvLayers’ weights
reduce from 3.7M ∗ 4Bytes ≈ 14.8MB to 3.7M ∗ 10bits/8 ≈ 4.6MB, a reduction
of 68.92% that further enables the storage of its weights in ROMs inside the
FPGA, greatly reducing the communication overhead for weight loading.

5 Results
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Fig. 3: Scalabity of the ConvCore by number of kernels

Using Vivado 2017.4, with ZYNQ-7 ZC702 Board (part xc7z020clg484-1) se-
lected, Vivado’s default settings for power estimation and 32 bits in the Q16.16
format, Figures 3a and 3b were generated, where the scalability of the number
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of kernels in terms of power consumption and LUT usage are compared between
Exact Fixed Point, Mitch-w and RMitch-w multipliers. For fairness of compari-
son, DSP units were disabled in the ConvCores, repurposing them for operations
that require greater accuracy, such as accelerating the fully connected layers.

Figure 3a showcases that the relative Power Consumption converges to a
horizontal asymptote. With 1 Kernel, RMitch-w4 achieves a relative reduction
of 45.03% and 22.31% in Power Consumption when compared to the Exact
Fixed Point and Mitch-w4 multipliers, accomplishing even better results at 16
Kernels, with relative reductions of 60.54% and 32.68% when compared to the
same multipliers with 16 Kernels.

Exact Fixed Point w1 = 6, w2 = 6 w1 = 4, w2 = 4

LUT Usage [k] 31.5 + 30.4 ≈ 61.9 8.1 + 6.9 ≈ 15.0 7.3 + 6.2 ≈13.5

FF Usage [k] 3.7 + 3.1 ≈6.8 3.2 + 2.6 ≈5.8 3.1 + 2.6 ≈ 5.7

Estimated Power [mW ] 564 + 551 ≈ 1115 354 + 350 ≈ 704 310 + 300 ≈ 610

Network Accuracy 99.1% 99.0% 99.1%

Table 1: Comparison of synthesis results (LeNet Network)

Finally, by extracting the weights from the LeNet Network available as a
sample at Caffe’s Github repository1, a simulated network using different w
parameters for each layer was executed, generating the Table 1. Due to time
constraints, the simulated network executed with a batch size of 1000 (10% of
the original test set), with the simulation environment Vivado 2017.4, a single
kernel for each layer for Power Consumption, LUT and FF Usage estimation.

With reductions of respectively 75.77% and 78.19% in LUT Usage, 14.7%
and 16.17% in FF Usage, 36.86% and 45.29% in Estimated Power Consumption
and drops in accuracy within margin of error, the results of RMitch-w6 and
RMitch-w4 from Table 1 further confirm the results showcased at [4], in which
the Mitch-w multiplier achieved an accuracy of 99.0% in LeNet.

6 Conclusions

By exploiting FPGA’s reconfigurability and the ConvCore’s input sharing and
parallelism, a ConvCore using approximate multipliers was implemented in FPGA
with reductions of up to 78.19% of LUT usage and 60.54% of power consumption
were achieved when compared to the core that uses exact fixed-point multiplier,
while maintaining comparable accuracy on a subset of MNIST dataset.
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