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Abstract. There exist many approaches for description and recognition of unseen
classes in datasets. Nevertheless, it becomes a challenging problem when we deal
with multivariate time-series (MTS) (e.g., motion data), where we cannot apply
the vectorial algorithms directly to the inputs. In this work, we propose a novel
multiple-kernel dictionary learning (MKD) which learns semantic attributes based
on specific combinations of MTS dimensions in the feature space. Hence, MKD
can fully/partially reconstructs the unseen classes based on the training data (seen
classes). Furthermore, we obtain sparse encodings for unseen classes based on
the learned MKD attributes, and upon which we propose a simple but effective
incremental clustering algorithm to categorize the unseen MTS classes in an unsu-
pervised way. According to the empirical evaluation of our MKD framework on real
benchmarks, it provides an interpretable reconstruction of unseen MTS data as well
as a high performance regarding their online clustering.

1 Introduction

Zero-shot learning is the problem of recognizing novel categories of data when no prior
information is available during the training phase [1, 2, 3]. One practical approach to
such transfer learning is the incorporation of semantic attributes as descriptive features
to map the input data to an intermediate semantic space, which can discriminate between
different unseen categories [2, 3]. Another concern in this area of research is the
partial/complete reconstruction of the unseen classes based on their relation to the
learned semantic attributes or the training data [4, 5].

An important application of zero-shot learning is multivariate time-series (MTS) in
the general meaning such as audio data and human motions [6, 7] with a considerable
number of unknown classes. Different from images and video, MTS do not possess any
general spatial dependency between its dimensions. Nevertheless, it is usually expected
to find semantic attributes shared between different classes of an MTS dataset. As an
example of MTS data, consider the Cricket Umpire signal Out in Fig. 1 which can be
described as the left hand is raised while the right hand is down. Such encoding provides
us with a semantic understanding of the data without having any prior knowledge about
its class label. We can also consider such descriptions as semantic attributes in order
to distinguish the unknown MTS data samples into distinct categories that reflect their
unknown labels. Although the semantic descriptions are class specific, we can share the
individual attributes among classes which have between-class partial similarities.

Sparse coding (SRC) is the idea of constructing an input data using weighted combi-
nations (sparse codes) of sparse selected entries from a set of learned bases (dictionary).
Such sparse representations can capture essential intrinsic characteristics of a dataset [8].
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Fig. 1: General overview of our framework. The dictionary (MKD) learns the semantic attributes
based on the seen classes. These attributes are used for a semantic description of the data from the
unseen classes, which leads to categorizing and partial reconstruction of the data.

Furthermore, via assuming an implicit mapping of the data to a high-dimensional feature
space, it is possible to formulate SRC using the kernel representation of the data [9] to
model also nonlinear data structures. Consequently, a subset of the existing research
has benefited from SRC methods in designing more effective attributes for dealing with
unseen classes of data; however, these efforts are mainly limited to the image (spatial)
and video (spatiotemporal) datasets [5, 10]

Despite the current achievements in learning unseen MTS data, either the existing
methods are depended on having prior information about the novel classes (e.g., sam-
ples/labels) [7], or they cannot interpret the unseen data based on their learned attributes.
Furthermore, to our knowledge, there is no research reported on the partial/complete
reconstruction of unseen classes for MTS data in general (e.g., recorded motion signals).

To address the above concerns, we provide the following contributions:
1- We design a novel dictionary structure which learns attributes that can represent MTS
based on the dimension level.
2- We propose an unsupervised kernel-based SRC method for partial reconstruction of
unseen MTS data in the feature space along with their interpretable encoding.
3- We design an incremental clustering based on the sparse encodings of the unseen data
which gradually creates a clustering dendrogram of the unseen classes.

After formulating the problem in Sec. 2, we introduce and explain our proposed
framework in Sec. 4, and we evaluate it in Sec. 4 followed by the conclusion section.

2 Problem Statement

Presenting a multivariate time-series in the vectorial space, Xi = [~xi(1) . . . ~xi(T )] ∈
Rf×T denotes sequence i, where (f, T ) represents the number of dimensions and the
sequence lengths respectively. The training set X = {Xi}N

i=1 belongs to c distinct data
classes with the label set l = {1, · · · , c}. Accordingly, the set of unseen MTS Z belongs
to the label set q, such that q∩l = ∅. Based on the above description, we are interested in:
1-Obtaining semantic attributes which create interpretable relations between sequences
Zi ∈ Z and the seen classes X (Fig. 1). 2-Using the obtained semantic attributes for
efficient clustering of the unseen set Z .

3 Multiple-Kernel Dictionary Learning Framework

Similar to Fig. 1, it is a common observation for real-world MTS data (e.g., human
motions) to find partial similarities between different data classes when considering a
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subset of their dimensions. Therefore, these similarities can lead to an interpretable
description for a novel data sample (from Z) via its relation to the seen classes (from
X ). Furthermore, such a description leads to a better clustering of novel data points Zi

without having any prior information on their class labels. To achieve the above, we
design a specific multiple-kernel dictionary (MKD) structure which is trained based onX
and learns semantic attributes similar to Fig. 1-left. To be more specific, MKD combines
dimensions of similar MTS samples in the feature space under non-negativity constraints.
These attributes can encode each unseen Zi ∈ Z as an interpretable description of its
dimensions and to better separate it from previous (unknown) classes in Z (Fig. 1-right).

To be more specific, we assume there exist f non-linear implicit kernel func-
tions {Φi(X)}f

i=1 to map each dimension of X into an individual RKH-spaces [9].
A weighted combination of these kernels with individual coefficients βi ≥ 0 (en-
tries of ~β) induces an embedding of the data in the feature space as Φ(X, ~β) :=
[
√
β1Φ1(X)> · · ·

√
βf Φf (X)>]>. We can apply this embedding to the whole training

data via Φ(X , ~β) := [Φ(X1, ~β) · · ·Φ(XN , ~β)], and additionally we consider k different
weighting schemes of the individual kernels as B = [~β1 · · · ~βk] ∈ Rf×k to complement
different existing classes in the data. Now, We define our novel multiple kernel dictionary
(MKD) matrix ΦB(U) as

ΦB(U) := [Φ(X , ~β1)~u1 · · ·Φ(X , ~βk)~uk] where U = [~u1 . . . ~uk] ∈ RN×k.

Each dictionary column Φ(X , ~βi)~ui is a weighted combination of selected dimensions
and selected samples from X based on the value of ~βi and ~ui respectively. Due to the
relation of Φ(X , ~βi)~ui to different dimensions of X , its columns can learn semantic
attributes similar to those of Fig. 1.

To fit (U,B) to the data efficiently, we aim for the sparse reconstruction Φ(X ) ≈
ΦB(U)Γ in the feature space based on a sparse matrix of codings Γ = [~γ1 . . . ~γN ] ∈
Rk×N . To that aim, We propose the following MKD sparse coding framework (MKD-
SC) for training the dictionary parameters (B,U) and sparse codes Γ:

min
B,Γ,U

‖Φ(X )− ΦB(U)Γ‖2
F

s.t. ‖~γi‖0 < T0, ‖Φ(X , ~βi)~ui‖2
2 = 1, uij , βij , γij ∈ R+, ∀ij,

(1)

where uij , βij , and γij denote the j-th entry of the i-th column of U,B, and Γ respec-
tively. The loss term in Eq. 1 measures the reconstruction error of the sparse coding
based on the Frobenius norm ‖.‖F . The term ‖.‖0 denotes the l0-norm which employs
sparsity constraints for elements of Γ via the constant T0 which results in having each
Xi constructed with sparse contributions from X . The l2-norm constraint on Φ(X , ~βi)~ui

prevents the optimization solutions from becoming degenerated [8].
Hence the dictionary ΦB(U), which results from the optimization problem in Eq. 1,

contains attributes (columns), which are weighted combinations of different exemplars
and dimensions from X . The non-negativity constraints result in having similar re-
sources become combined which leads to learning semantic attributes for ΦB(U) and
an interpretable sparse description based on each ~γi [11]. In the Sec. 3.2 and 3.3, we
benefit from this framework to describe and categorize unseen MTS samples.

3.1 Optimization Scheme
We optimize the parameters U, Γ, and B in alternating steps, such that at each update
step, we optimize Eq. 1 with respect to one parameter while fixing the others. Based
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on the dot-product relations {Ki(X ,X ) = Φi(X )>Φi(X )}f
i=1, it is possible to rewrite

Eq. 1 in terms of each of (~γi, ~ui, ~βi) individually to obtain a general convex form of

min
~x

1
2~x
>H~x+ ~c>~x s.t. ‖~x‖0 < T0, xi ∈ R+ ∀i, (2)

in which (H,~c) are computed without any explicit reference to the embeddings Φi. Such
problems can be optimized via the non-negative quadratic pursuit (NQP1) algorithm
from [12]. Due to the page limit, we will put the detail regarding the reformulation of
Eq. 1 and the optimization steps in the online extended version of the paper 2.

3.2 Partial Reconstruction of Unseen MTS
In realistic MTS datasets such as human actions, it is expected to observe partial similar-
ities between the dimensions of different classes. Therefore, we define the following
error measure for the reconstruction of a selected set of dimensions S related to data Z:

J Srec(Z,B,U) = ‖ISΦ(Z)− ISΦB(U)Γ‖2
2/‖ISΦ(Z)‖2

2 (3)

where BS , and IS are modified versions of B and the identity matrix respectively via
making all the entries zero except the rows corresponding to S. Consequently, the
learned dictionary ΦB(U) can partially reconstruct the unseen time-series Z for the
subset S of its dimensions, if J Srec(Z,B,U) is relatively small.
3.3 Incremental Clustering of Unseen MTS
We propose Algorithm 1 relying on the partial similarity of different MTS classes and
the descriptive quality of the learned attributes of MKD. This algorithm incrementally
clusters the unseen sequences of Z into a dendrogram H in an online fashion, and
also finds the potential sub-clusters among them. To that aim, for each unknown MTS
sequence Z, we prepare an encoding matrix R ∈ RN×f , i-th column of which represents
the weights of contribution from X in the reconstruction of the i-th dimension of Z.
Therefore, rji =

∑k
t=1 βitujtγt where rji denotes the j-th entry of the i-th column of

R. This matrix is considered as a rich encoded descriptor for dimensions of Z based on
X and is used in Algorithm 1 to compare Z to the previously categorized unseen data in
H to find the best place for Z in the dendrogram. Line 1 of the algorithm finds Cn as
the most similar node to Z based on the distance term d(Z, Cn) = ‖RZ −RCn

‖2
F , and

1https://github.com/bab-git/NQP
2https://github.com/bab-git/MKD Unseen MTS

Algorithm 1: Incremental Clustering of an Encoded MTS data

Input: R: Encoding of the new unseen data Z,H: The current hierarchical tree.
Output: Place of Z in the hierarchyH.

1 If ∃Cn such that d(Z, Cn) ≤ d̄(Cn) then
2 If Cn is a leaf node then add Z to Cn;
3 If (d̄(Cn1) + d̄(Cn2))/2d̄(Cn) ≤ kclust then
4 split Cn into Cn1 and Cn2 using k-means;
5 If (d̄(Cn1) + d̄(Cn2))/2d̄(Cn) ≤ krmv then
6 Replace Cn with Cn1 and Cn2;
7 else add {Cn1, Cn2} as the children of Cn;
8 else Create a new child for Cn as Cnt and add z to it;
9 else Create a new leaf at the top level containing Z;
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Table 1: Average of DRA measure (%) for reconstruction of the unseen classes.

Cricket CMU Words Squat
DRA (%) 76.4 84.5 80.2 62.6

the intra-cluster distance for each node Cn as d̄(Cn) = EZi∈Cn [d(RZi ,RCn)], where
RCn = EZi∈Cn [RZi ]. Regarding line 5, We choose krmv = 0.3 in our experiments
which results in an acceptable clustering outcome.

4 Experiments
To evaluate the performance of our sparse coding framework for representation and dis-
crimination of unseen data, we choose the MTS datasets Cricket Umpire, CMU mocap,
Articulatory Words, and Squat with the descriptions provided by [11]. For all the datasets,
the Gaussian kernel matrices are computed as {Kl(Xi,Xj) = exp(−Dl(Xi,Xj)/δl)}f

l=1,
where Dl(Xi,Xj) is the computed pairwise DTW-distance between the l-th dimension
of Xi and Xj [11] (but can be substituted with any other preferred distance). For tuning
T0 and the dictionary size in Eq. 1, we use 5-fold cross-validation.

4.1 Partial Reconstruction Results
In order to evaluate the reconstruction quality for each unseen data Z, we define the
dimension-reconstruction accuracy measure asDRA := # dimensions that {J i

rec(Z,B,U)≤0.1}
# total dimensions

using Eq. 3. Furthermore, each reconstructed dimension of Z which satisfies the above
threshold is interpreted via the class of data with the most contribution as in Sec. 3.2.
Table 1 reports the DRA values for the selected MTS datasets, where the CMU and
Words datasets have higher DRA values due to their diverse set of training classes
which increases the dimension-level similarity between seen and unseen classes. As an
example, We illustrate the dimension-level reconstruction of 2 unseen categories from
the Cricket dataset in Fig. 2, in which the No ball class is fully reconstructed via its
relation to the movement of the left hand in the Short class and to that of the right hand
in the Wide class.

4.2 Incremental Clustering Results
To evaluate the incremental clustering of Sec. 3.3 we use the average clustering error
(CE) and normalized mutual information (NMI) [13]. As the most relevant baseline, we
choose the self-learning algorithm [7] without its novelty detection part. Besides, we
implement the spectral clustering algorithm on the original kernel matrix K(Z,X ) to
compare our framework to the regular clustering of Z . As another baseline, we also use
the NNKSC algorithm [11] as the single-kernel predecessor of MKD-SC, for which the
R matrix becomes an N -dimensional vector.

According to the clustering results in Table 2, the proposed MKD-SC method
provides encodings which lead to better clustering of the unseen data compared to the

(a) no ball → {short+ wide} (b) out→ {six}
Fig. 2: Dimension-level interpretation of no-ball and out (Cricket) based on the training classes.
Related dimensions are specified via using same-color rectangles.
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Table 2: Clustering error (CE) (%) and NMI the unseen categories.

Methods Words Squat CMU Cricket
CE NMI CE NMI CE NMI CE NMI

MKD-SC(Proposed) 12.31 0.89 0 1 9.28 0.92 0 1
Self-learning [7] 18.75 0.84 0 1 14.25 0.87 16.63 0.85
NNKSC[11] 21.61 0.78 15.74 0.88 18.88 0.85 12.45 0.87
Spectral Clustering 27.51 0.76 13.04 0.90 23.45 0.76 8.04 0.89

baselines. The superiority of the spectral-clustering over NNKSC and self-learning
methods (e.g., for Cricket dataset) depends on the discriminative quality of the original
kernels. Self-learning method can have a better performance than NNKSC and spectral-
clustering when its descriptor-based features can better discriminate between the different
categories of the unseen classes.

5 Conclusion
In this research, we proposed an unsupervised framework which provides interpretable
analysis of unseen classes in MTS datasets. It is constructed based on a novel MKD
structure which uses the kernel representations of MTS dimensions to learn semantic
attributes. Based on these attributes, our unsupervised MKD-SC framework reconstructs
the unseen classes (partially/entirely) in the feature space according to the relation of their
dimensions to those of the seen categories which provides an interpretable description of
the novel data. Based on the obtained sparse encodings, we proposed an incremental
clustering to categorize novel MTS into distinct clusters gradually. Experiments on real
MTS benchmarks show the effectiveness of our MKD-SC framework in obtaining inter-
pretable descriptions for unseen MTS classes. Additionally, the incremental clustering
provides better clustering accuracy comparing to the baselines.
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