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Abstract. Noisy multi-way data sets are ubiquitous in many domains. In
neuroscience, electroencephalogram (EEG) data are recorded during peri-
odic stimulation from different sensory modalities, leading to steady-state
(SS) recordings with at least four ways: the channels, the time, the sub-
jects and the modalities. Improving the signal-to-noise ratio (SNR) of the
SS responses is crucial to enable their practical use. Supervised spatial
filtering methods can be considered for this purpose to relevantly guide
the extraction of specific activity patterns. Nevertheless, such approaches
are difficult to validate with few subjects and can process at most two data
ways simultaneously, the remaining ones being either averaged or consid-
ered independently despite their dependencies. This paper hence designs
unsupervised tensor factorization models to enable identifying meaningful
underlying structures characterized in all ways of multimodal SS data. We
show on EEG recordings from 15 subjects that such factorizations faith-
fully reveal consistent spatial topographies, time courses with enhanced
SNR and subject variations of the periodic brain activity.

1 Introduction

Noisy multi-way data sets are encountered in numerous machine learning and
signal processing applications, including audio and image processing, biomedical
studies, chemometrics and social sciences [1, 2]. In neuroscience in particular,
neurophysiological recordings such as the electroencephalogram (EEG) naturally
span more than two dimensions, including the channels, the time, the frequency
and the subjects. The analysis of such data usually requires to isolate the un-
derlying hidden patterns of interest from the noise activity [3]. For instance, to
study the cortical processing of sensory stimuli, EEG can be recorded during pe-
riodic stimulation from different modalities (visual, auditory, etc.). This kind of
stimulation can elicit periodic activity at the stimulation frequency in neuronal
populations responding to the stimulus, referred to as a steady-state response
(SSR). In this setting, guided (i.e. supervised) spatial filtering methods can be
considered to uncover the temporal and spatial patterns of the SSR by maximiz-
ing the periodicity of the extracted components [4, 5, 6]. These approaches are
particularly relevant when the hidden activity of interest has a specific structure,
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such as the periodicity, which can be directly optimized. Nevertheless, the struc-
ture optimization requires a careful validation of the obtained patterns, which
is not straightforward, especially when the number of subjects is limited [6]. In
addition, such approaches are defined on two-way arrays although the studied
data usually are higher-order tensors, requiring to either average some results
over the subjects or process pairs of ways independently. Finally, interpreting
the underlying activity entails inverting the filters to obtain source patterns [7],
which may lead to irrelevant patterns when few filters are computed.

On the other hand, unsupervised tensor factorization (TF) models circum-
vent the three aforementioned shortcomings of the supervised spatial filtering
approaches to extract SSRs from noisy EEG. Indeed, their unsupervised nature
eases their validation and they account for all data ways at once, without the
need for any inversion. Surprisingly, despite numerous successful applications of
TFs [1, 8, 9], including on EEG data mainly to identify space-time-frequency
atoms of some waveforms [10, 11, 12, 13], higher-order tensors have not yet been
considered for the SSR analysis. In this paper, we therefore analyze whether and
how TF can enhance the SNR of the SSR observed on raw EEG. Using EEG
data from 15 healthy subjects exposed to periodic stimuli from four modalities,
we first create a tensor with three modes, namely the subjects, the channels and
the time for all modalities, to capture common spatial and varying time pat-
terns across modalities. Second, we employ the canonical polyadic (CP) model
to factor this tensor, successfully enhancing the SNR of the SSR while preserv-
ing the specific temporal dynamics for each modality and extracting spatial and
temporal patterns involved in all the subjects. Finally, a sensitivity analysis of
the periodicity gain over the raw mean signals with respect to the number of
tensor factors reveals significant improvements, even with as few as two factors.

This paper is organized as follows. Section 2 introduces the studied EEG
data. The TF model is detailed in Sect. 3 and the obtained results are com-
mented in Sect. 4. Section 5 concludes the work and sketches perspectives.

2 Electroencephalogram (EEG) Data

To study the perception of long-lasting periodic thermal stimuli, we recorded
scalp EEG on N = 15 healthy subjects to whom we applied, with a thermode,
sinusoidal stimulation from M = 4 modalities: warm and cool, each applied on
a variable or fixed skin surface along the stimulation cycles, respectively denoted
by w1, w2, c1 and c2. The EEG was sampled at fs = 1000 Hz and recorded using
C = 64 electrodes (i.e. channels). The subjects received each kind of stimulus
with a frequency f? = 0.2 Hz and a duration of 75 seconds (15/f?). Additional
data descriptions are provided in [4]. The EEG time courses and their Fourier
transforms are illustrated in Sect. 4 with some tensor factors.

The activity of interest in these data is the SSR reflecting the stimulus pro-
cessing in the brain, which is assumed to be periodic, with fundamental frequency
f?. To assess and compare further results, we hence quantify the periodicity of
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a unidimensional signal y(t), whose frequency transform is denoted by Y (f), as

Mπ(y) = 100 ·
∑10
k=1 YNS(k · f?)∑

f |Y (f)|
, (1)

with YNS(f) the noise-subtracted frequency amplitude at frequency f , obtained
by subtracting the average amplitude at 10 neighboring frequencies (5 higher
and 5 lower) from |Y (f)| [4]. If y is (resp. not) periodic, Mπ(y) will be positive
(resp. tend towards 0). According to one-sample t-tests with 5% confidence,
Mπ indicates a significant periodicity, on average over the subjects, for the raw
signals of the conditions w1, w2 and c1, at the fronto-central electrode named
FCZ, where the periodicity is the highest. In condition c2, neither Mπ nor
YNS(k · f?) for any k are significantly greater than 0 at FCZ.

3 Methods

This section aims to construct a tensor containing the data described in Sect. 2
and whose factorization emphasizes the SSR. In the following, vectors are written
in lower-case and tensors, with at least three dimensions, in calligraphic letters.
Since the stimuli from all four conditions activate the spinothalamic system, they
are expected to elicit brain activities with similar spatial topographies, but with
possibly distinct time courses, at least partly due to the different conduction
velocities of the activated afferent fibers. In addition, the identified SSR should
be common to (almost) all subjects, possibly in distinct proportions.

Consequently, let us first define a three-way array A ∈ RC×T×N , where T :=∑M
i=1 Ti and Ti is the number of time samples for condition i, i ∈ {1, . . . ,M}.

The time samples for the M modalities are hence stacked along the second
dimension of A. We then consider the canonical polyadic (CP, also known as
CANDECOMP or PARAFAC) model to factorize A [13]. For a given number
of factors R, it computes the sum of R rank-1 tensors which best approximates
A in the least squares sense [14]. The factorization can be expressed as A ≈∑R
r=1 pr ◦ sr ◦wr, where ◦ denotes the vector outer product, pr ∈ RC the spatial

patterns, sr ∈ RT the factor time courses (i.e. temporal patterns) and wr ∈ RN
the subject weightings. This decomposition can be illustrated as

A

T1 ... TMTime
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bj.

≈

p1

w1

s1
...s1;1 s1;M

+ . . . +

pR

wR

sR

...sR;1 sR;M
, (2)

where the segment sr;i is the time course for the modality i in the rth factor. All
ways of the data set can hence be analyzed in a single factorization with shared
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spatial and distinct temporal patterns for all modalities. Each wr (i.e. mode-3
fiber) indicates the between-subject variations. Indeed, in accordance with the
above intuition, each frontal slice (i.e. matrix for a fixed third index) in (2) is
defined through the same spatial and temporal patterns pairs, but with different
proportions according to the mode-3 fibers (i.e. weightings across subjects).
As the periodicity of the time courses drives our interest in the factors of this
decomposition, they are sorted in decreasing order of the value maxiMπ(sr;i),
such that s1 contains the most periodic time course from one modality.

The fast and scalable algorithm CP-OPT, using the L-BFGS optimization
method, is employed to compute the CP models for various R values [14]. It is
implemented in the open-source Tensor Toolbox [15].

4 Results

This section presents how model (2) can extract periodic time courses as a func-
tion of the number R of factors and illustrates the three-way patterns obtained
on the EEG data set described in Sect. 2. The factor time courses sr;i, and
their periodicity in particular, are compared to the raw EEG recordings at elec-
trode FCZ, since they depict the highest periodicity and would hence be the
analyzed signals if no factorization was employed [6]. The significance level of
the statistical tests is set to 5%.
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Fig. 1: Periodicity measure Mπ of (a) the first temporal patterns s1;i and of (b)
all patterns sr;i as a function of the number R of factors. The dotted horizontal
lines indicate the periodicity at FCZ, averaged over the subjects for each condi-
tion. In (a), a marker below the plot for a given R indicates that the periodicity
of the pattern represented with the same marker is significantly different from
the mean periodicity at FCZ (one-sample t-tests, Holm-Bonferroni corrected).

The number R of factors considered in the CP approximation needs to be
determined. Intuitively, too small R would not enable separating the noise from
the periodic activity of interest (e.g. if R = 1, the whole EEG activity needs to
be approximated in the sole factor), whereas too large R could tend to spread
this activity among several factors. The periodicity of the temporal patterns s1;i
are reported in Fig. 1a, with one color and marker for each modality i. For all
R ≥ 2, the periodicity of the extracted pattern is significantly larger than the
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Fig. 2: Time courses averaged over the cycles and frequency transforms of the
first factors s1;i when R = 6 (dark blue lines), and of the EEG at FCZ (subject-
level curves in blue and mean curves over the subjects in black and dotted). The
stimulation temperatures are shaded and a star indicates a significant difference
between the amplitudes at FCZ and of s1;i at k · f? (one-sample t-tests).
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Fig. 3: First three (a) spatial patterns p1, p2 and p3 and (b) between-subject
weightings w1, w2 and w3, when R = 6 (r being the factor index).

one of the signal at FCZ for all conditions except c2. The absence of periodicity
gain for all R for condition c2 suggests that there is indeed no periodic response
for this condition, as the periodicity at FCZ was not significant in Sect. 2. Also,
Fig. 1b indicates the periodicity of sr;i for all r = 1, . . . , R, the factors being
ordered in decreasing order of maxiMπ(sr;i). It can be noted that the first time
course s1;i is the most periodic for all three first conditions i and all R, suggesting
that employing shared spatial patterns for the conditions is indeed relevant.

Fig. 2 illustrates s1;i extracted when R = 6 compared to the signals at the
single electrode FCZ. One can observe that considering all the channels and
subjects at once in the CP model improves the SNR of the periodic components,
while preserving their temporal dynamics, especially the latencies of the peaks.

Finally, Fig. 3 depicts the first spatial patterns {pi}3i=1 and subject weightings
{wi}3i=1 obtained when R = 6. The first extracted topography is consistent
with the nature of the considered stimuli [4] and w1 indicates that the first
spatio-temporal factor is reflected in all subjects with well-balanced proportions,
whereas the second and third factors appear to be more subject-specific.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

605



5 Conclusion

This paper shows that tensor approximations can be employed to enhance the
SNR of some EEG responses. In particular, we found a relevant spatial pat-
tern shared by four modalities and associated with modality-specific periodic
time courses, reflecting the SSR of all subjects. Employing unsupervised tensor
factorizations enables (1) avoiding overfitting a given criterion, (2) highlighting
temporal activity patterns from all subjects with a higher SNR than the raw
mean signals and (3) considering all the modes of a multi-way data set at once,
without requiring further averaging nor data selection. These encouraging re-
sults motivate further works to study the model fitting and its robustness as a
function of both the model and the sample sizes and to enlarge its application.
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