
DropConnect for Evaluation of Classification
Stability in Learning Vector Quantization

J. Ravichandran1, S. Saralajew2, and T. Villmann1 ∗

1- Univ. of Appl. Sciences Mittweida,
Saxony Institute for Comp. Intelligence and Machine Learning

Computational Intelligence Research Group
Mittweida - Germany

2- Dr. Ing. h.c. F. Porsche AG - Driver Assistance Systems
Weissach - Germany

Abstract. In this paper we consider DropOut/DropConnect techniques
known from deep neural networks to evaluate the stability of learning
vector quantization classifiers (LVQ). For this purpose, we consider the
LVQ as a multilayer network and transfer the respective concepts to LVQ.
Particularly, we consider the output as a stochastic ensemble such that an
information theoretic measure is obtained to judge the stability level.

1 Introduction
Dropout techniques like DropOut (DO) and DropConnect (DC) for deep multi-
layer perceptron networks (deep MLP, [1]) are appropriate methods to prevent
the network from overfitting [2, 3]. DO can also be used during the working
phase to judge the output’s confidence level of the MLP [4]. Depending on task,
the output of the MLP could either be a regression value or a class label.

Learning vector quantization (LVQ) is a prototype based classifier introduced
by geometric considerations [5]. More specifically, LVQ distributes prototypes
in the data feature space equipped with a dissimilarity measure depending on
the class distribution given in this feature space. Nonetheless, LVQ can be also
seen as a neural network as explained in [6]. Taking this perspective, dropout
techniques can also be employed for LVQ. In this contribution we investigate a
DC-approach for confidence estimation in LVQ networks to judge the classifica-
tion stability. Particularly we focus on Generalized Matrix LVQ (GMLVQ) as
it is one of the most powerful LVQ variants [7], which provides an interpretable
sparse classifier with a performance comparable to that of deep networks for
many problems [8, 9].

2 Generalized Learning Vector Quantization
We take the geometric perspective in considering GMLVQ. GMLVQ is a robust
LVQ variant based on a cost function approximating the classification error
[10, 7]. We assume data classes 1, . . . , C and data x ∈ X ⊆ Rn in the data space
X. The aim is to distribute a set W = {w1, . . . ,wM} ⊂ Rn of prototypes such
that we can assign a class c (x) to each x ∈ X. Each prototype wk is equipped
with a class label c (wj) such that at least one prototype is responsible for each
class. Then the class assignment c (x) = c

(
ws(x)

)
for a data sample x is realized

by means of a winner-take-all competition (WTAC)

s (x) = argminj (d (x,wj)) (1)

∗J.R. is supported by a PhD-grant of ESF.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

19

where d is a given general dissimilarity measure [11]. We denote ws(x) as the
winner prototype of the competition. In standard LVQ, d is chosen as the squared
Euclidean distance (SDE) whereas for the original GMLVQ the SDE

δΩ (x,wj) = (Ω (x−wj))
2

(2)

of the projected data with the projection matrix Ω ∈ Rnp×n is ap-
plied, and np is the projection dimension. The cost function to be mini-
mized is EGMLVQ (W,Ω) =

∑
xE (x,W,Ω) with local errors E (x,W,Ω) =

ϕ (µ (x,W,Ω)). Here ϕ (z) is a monotonically increasing function frequently
chosen as the identity function id (z) = z or the sigmoid function [12]. Further,

µ (x,W,Ω) =
δΩ (x,w+)− δΩ (x,w−)

δΩ (x,w+) + δΩ (x,w−)
(3)

is the so-called classifier function where w+ is the best matching prototype with
the correct class label c (x) = c

(
ws(x)

)
and w− is the best matching prototype

with an incorrect class label c (x) 6= c
(
ws(x)

)
. Thus, µ (xk,W,Ω) ∈ [−1, 1]

takes negative values if x is correctly classified.

Usually, learning in GMLVQ takes place as stochastic gradient descent learn-
ing (SGDL) for EGLVQ according to

∆w± ∝ −ξ
(
x,w±

)
· ∂µ

∂δ±Ω (x)

∂δ±Ω (x)

∂w±
(4)

where the scaling factor

ξ
(
x,w±

)
=
∂E (x)

∂ϕ
· ∂ϕ
∂µ

(5)

is obtained by applying the chain rule for differentiation with the short hand
notation δ±Ω (x) = δΩ (x,w±). The projection matrix Ω also can be adjusted
using SGDL by

∆Ω ∝ −ξ
(
x,w±

)
· ∂µ
∂Ω

where
∂µ

∂Ω
=

∂µ

∂δ−Ω (x)
·
∂δ+Ω (x)

∂Ω
+

∂µ

∂δ−Ω (x)
·
∂δ−Ω (x)

∂Ω
(6)

is the derivative of the classifier function with

∂µ

∂δ+Ω (x)
=

+2δ−Ω (x)(
δ+Ω (x) + δ−Ω (x)

)2 and
∂µ

∂δ−Ω (x)
=

−2δ+Ω (x)(
δ+Ω (x) + δ−Ω (x)

)2 . (7)

As an alternative to explicit SGDL, advanced stochastic gradient approxi-
mations such as AdaDelta, Adam and vSGDL were investigated recently for use in
GMLVQ [13]. The two latter algorithms performed best in this study and are
hence highly recommended.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

20

Fig. 1: Illustration of a LVQ-MLN with two hidden layers.

3 GMLVQ as a Multilayer Network
If we consider the squared distance

dΩ (x,wk) = (Ωx−wk)
2

(8)

for GMLVQ, the prototypes will no longer live in the data space but rather in
the projection space, i.e. wk ∈ Rnp . By doing so, we can consider GMLVQ as a
multilayer network denoted as LVQ-MLN [6]: A LVQ-MLN consists of an input
layer I, two hidden layers hI and hII and an output layer O, see Fig. 1. The
nodes hIi of the first hidden layer hI ∈ Rnp are perceptron units according to

hIi (x) = gIi
(
〈ωi,x〉E + βI

i

)
(9)

with activation functions gIi , perceptron weight vectors ωi ∈ Rn and biases
βI
i ∈ Rn. Thus, the first layer may perform a nonlinear projection

hI (x) = gI
Ω,β (x) (10)

of the data depending on the choice of activation functions gI
Ω,β with Ω =(

ω1, . . . ,ωnp

)
and the bias vector β ∈ Rnp . Therefore, this layer is denoted as

the projection layer in this context. The second layer hII is fully connected to
the previous layer hI via

hIIj (x) = gII
(
d
(
hI (x) ,wj

))
(11)

thereby realizing the prototype response. Here, d is an arbitrary (differentiable)
dissimilarity measure and gII is the activation function for the second layer which
is usually chosen as the identity function id (z) = z. For a crisp classifier network,
the output layer O ∈ RM is calculated as

Ol =
M∑
k=1

H
(
hIIl (x)− hIIk (x)

)
(12)

where

H (z) =

1 if z ≥ 0

0 else

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

21

is the Heaviside function. Hence, Ol returns the winning rank of the prototype
wl and Ol = 1 is valid iff l = s (x) with

s (x) = argmink
(
hIIk (x)

)
(13)

realizing the WTAC (1). Therefore, we denote the output layer also as the
competition layer. Finally, the data point x is assigned to the class of the
corresponding winning output unit c

(
ws(x)

)
. Thus, the formula (12) for the

determination of the winning rank is equivalent that known from the neural gas
network [14].

For a probabilistic or possibilistic LVQ, the output can be calculated as

Ol = exp

(
−hIIl (x)∑
k h

II
k (x)

− γ
)

(14)

realizing a softmax function. For each class c ∈ {1, . . . , C}, the assignment
probability pc (x) is calculated as

pc (x) =

M∑
k=1,c(wk)=c

Ok (15)

as known from robust soft LVQ [15].
Obviously, if βI

i = 0 and gIi (z) = id (z) is the identity for all i = 1 . . . np,
the projection in the projection layer simply becomes hI (x) = Ωx, as it is
required for (8) and, hence, the standard GMLVQ model is obtained. If a kernel
distance dκ (x,wj) with kernel κ (x,wj) is used as a dissimilarity measure in
the prototype layer hII, an implicit kernel mapping Φκ (x) takes place in the
prototype layer [16].

As for standard GMLVQ, learning in LVQ-MLN can be realized by SGDL
with respect to the prototypes and the projection matrix Ω and the bias vector
β as explained in [6].

4 DropConnect in LVQ-MLN and Classification Stability
The DC-concept can be easily realized in the LVQ-MLN applying it to the
matrix Ω of the projection layer gI

Ω,β (x) from (10). General DC simply sets
values ωij to zero with a DC-probability p. Structured DC can be achieved if
a certain component j∗ is set to zero for all ωij∗ . This is equivalent to DO
of input units [6]. DC applied for a given data x in the working phase of a
LVQ-MLN realizes a stochastic ensemble of C GMLVQ-output models M (x),
which yield a probability distribution/density PM (x, c| p) regarding the classes
c. A high network classification stability is given if only a few values are non-
vanishing. Maximum instability is obtained if PM (x, c| p) ≈ 1/C is resulted
for all c. This behavior can be estimated using a information theoretic stability
measure C (x, c| p) = 1− S (x, c| p)/Smax where

S (x, c| p) = −
∑
c

PM (x, c| p) · log (PM (x, c| p)) (16)

is the Shannon entropy and Smax = log (C) is its maximum value. Unique
classification, i.e. maximum stability, is achieved for C (x, c| p) = 1. Another

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

22

Type np p=0.5 p=0.1 p=0.01 accuracy
DrC 2 0.90 ± 0.05 0.94 ± 0.05 0.98 ± 0.04 100.00%
DrC 5 0.89 ± 0.05 0.94 ± 0.05 0.98 ± 0.03 100.00%
DrC 10 0.92 ± 0.05 0.96 ± 0.05 0.98 ± 0.04 100.00%
DiC 2 0.98 ± 0.04 0.99 ± 0.03 1.00 ± 0.01 100.00%
DiC 5 0.98 ± 0.03 1.00 ± 0.02 1.00 ± 0.01 100.00%
DiC 10 0.98 ± 0.03 0.99 ± 0.02 1.00 ± 0.01 100.00%

Table 1: Results of the stability analysis of a LVQ-MLN for the Tecator data
set using different projection dimensions np for Ω. The last column reports the
achieved classification accuracy for the undisturbed model. The p-value is the
disturbance probability.

Type np p=0.5 p=0.1 p=0.01 accuracy
DrC 2 0.88 ± 0.10 0.85 ± 0.09 0.94 ± 0.05 89.86%
DrC 10 0.86 ± 0.11 0.93 ± 0.08 0.98 ± 0.04 91.58%
DiC 2 0.95 ± 0.06 0.98 ± 0.04 1.00 ± 0.02 89.86%
DiC 10 0.99 ± 0.04 0.99 ± 0.03 1.00 ± 0.01 91.58%

Table 2: Results of the stability analysis of a LVQ-MLN for the FLC dataset.
The interpretation is as for Tab. 1.

option for stability estimation is to add random noise to the weights, i.e. ω̂ij =
ωij + η of small variance relative to |ωij |.

5 Application and experimental results
We tested the approach for two real world data sets. The first one is the well-
known Tecator [17] of spectral data to detect the fat content in meat (binary
classification). The second data set (FLC) is a classification data set for LAND-
SAT TM data vectors in ground cover classification (11 classes) [18]. The results
of the experiments that were performed on the Tecator data set are summarized
in the Tab. 1. The values in the cells are the averaged stability values (± standard
deviation) C (x, c|p) of the data points. In all experiments only one prototype
per class was used. The disturbance level for DiC was set to η = 1%.

The results of the experiments that were performed on the FLC are summa-
rized in the Tab. 2 with the same interpretation as for Tecator.

For both experiments we can conclude that the suggested procedure provides
an appropriate method to evaluate the classification stability.

6 Conclusion
In this contribution we considered the problem of evaluation of classification cer-
tainty/stability in LVQ-MLN. It was tackled adopting the idea of DropConnect
as known from deep networks. Thus a measure of confidence/stability for the
classification can be estimated during the working phase of the network. Future
work will include the investigation of reject options, as explained in [19], into
this approach to further improve the classifier stability as well as the evaluation
of class-dependent stability.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

23

References

[1] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[2] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[3] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural networks
using dropconnect. In Proceedings of the 30th International Conference on Machine
Learning (ICML), Atlanta, Georgia, USA, volume 28 of JMLR:W&CP, pages 1–9, 2013.

[4] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In M.F. Balcan and K.Q. Weinberger, editors, Proceed-
ings of the International Conference on Machine Learning, New York, New York, USA,
volume 48, pages 1050–1059, 2016.

[5] Teuvo Kohonen. Learning Vector Quantization. Neural Networks, 1(Supplement 1):303,
1988.

[6] T. Villmann, S. Saralajew, A. Villmann, and M. Kaden. Learning vector quantization
methods for interpretable classification learning and multilayer networks. In C. Sabourin,
J.J. Merelo, A.L. Barranco, K. Madani, and K. Warwick, editors, Proceedings of the 10th
International Joint Conference on Computational Intelligence (IJCCI), Sevilla, pages
15–21, Lissabon, Portugal, 2018. SCITEPRESS - Science and Technology Publications,
Lda. ISBN: 978-989-758-327-8?

[7] P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matrices in learning vector
quantization. Neural Computation, 21:3532–3561, 2009.

[8] M. Biehl, B. Hammer, and T. Villmann. Prototype-based models in machine learning.
Wiley Interdisciplinary Reviews: Cognitive Science, 7(2):92–111, 2016.

[9] T. Villmann, A. Bohnsack, and M. Kaden. Can learning vector quantization be an alter-
native to SVM and deep learning? Journal of Artificial Intelligence and Soft Computing
Research, 7(1):65–81, 2017.

[10] A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky,
M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing
Systems 8. Proceedings of the 1995 Conference, pages 423–9. MIT Press, Cambridge,
MA, USA, 1996.

[11] D. Nebel, M. Kaden, A. Villmann, and T. Villmann. Types of (dis−)similarities and
adaptive mixtures thereof for improved classification learning. Neurocomputing, 268:42–
54, 2017.

[12] T. Villmann, J. Ravichandran, A. Villmann, D. Nebel, and M. Kaden. Activation func-
tions for generalized learning vector quantization - a performance comparison. Technical
Report arXiv:1901.05995, ArXiv, 2019.

[13] M. LeKander, M. Biehl, and H. deVries. Empirical evaluation of gradient methods for ma-
trix learning vector quantization. In Proceedings of the 12th Workshop on Self-Organizing
Maps and Learning Vector Quantization (WSOM2017+), pages 1–8. IEEE Press, 2017.

[14] Thomas M. Martinetz, Stanislav G. Berkovich, and Klaus J. Schulten. ’Neural-gas’ net-
work for vector quantization and its application to time-series prediction. IEEE Trans.
on Neural Networks, 4(4):558–569, 1993.

[15] S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation,
15:1589–1604, 2003.

[16] T. Villmann, S. Haase, and M. Kaden. Kernelized vector quantization in gradient-descent
learning. Neurocomputing, 147:83–95, 2015.

[17] F. Rossi, N. Delannay, B. Conan-Gueza, and M. Verleysen. Representation of functional
data in neural networks. Neurocomputing, 64:183–210, 2005.

[18] D.A. Landgrebe. Signal Theory Methods in Multispectral Remote Sensing. Wiley, Hobo-
ken, New Jersey, 2003.

[19] T. Villmann, M. Kaden, A. Bohnsack, S. Saralajew, J.-M. Villmann, T. Drogies, and
B. Hammer. Self-adjusting reject options in prototype based classification. In E. Merényi,
M.J. Mendenhall, and P. O’Driscoll, editors, Advances in Self-Organizing Maps and
Learning Vector Quantization: Proceedings of 11th International Workshop WSOM 2016,
volume 428 of Advances in Intelligent Systems and Computing, pages 269–279, Berlin-
Heidelberg, 2016. Springer.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

24

