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Abstract. Low-rank matrix completion is the problem of recovering
the missing entries of a data matrix by using the assumption that a good
low-rank approximation to the true matrix is possible. Much attention has
been paid recently to exploiting correlations between the column/row enti-
ties through side information to improve the matrix completion quality. In
this paper, we propose an efficient algorithm for solving the low-rank ma-
trix completion with graph-based regularizers. Experiments on synthetic
data show that our approach achieves significant speedup compared to the
alternating minimization scheme.

1 Introduction

Low-rank matrix completion arises in applications such as recommender sys-
tems, forecasting and imputation of data. In certain situations, regularization
methods, in addition to the low-rank assumption, that exploit other properties
of the data matrix are needed since these (low-rank) data often come with other
structures. Graph-based regularization methods [1, 2, 3, 4, 5] have gained much
attention recently. These regularization methods model the pairwise similarities
between the entries of the data matrix via undirected and weighted graphs and
apply the graph-based regularizers to the low-rank matrix completion problem.
Rao et al. [4] consider recovering a partially observed matrix by solving the
following graph-regularized matrix factorization program

minimize
G∈Rm×r,H∈Rn×r

f(G,H) :=
1

2
‖PΩ(GHT −M)‖2F +RLr

(G) +RLc
(H) , (1)

where PΩ(·) is the mask operator that reveals only the entries of M ∈ Rm×n on
an index set Ω ⊂ [[m]] × [[n]] of size |Ω| � mn and the regularizers are defined
according to the penalty function RL (Q) := α

2

(
‖Q‖2F + γTr(QTLQ)

)
for some

given graph Laplacian matrix L. The graph Laplacian matrices Lr and Lc in-
corporate the pairwise correlations or similarities between the rows or columns
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of the data matrix M. Rao et al. [4] showed that problem (1) is equivalent to
a weighted nuclear norm minimization problem and that the resulting low-rank
approximation has a smaller upper bound for the recovery error than the stan-
dard nuclear norm minimization problem. In this previous work, an alternating
minimization method is developed for solving the problem (1).

In this paper, we propose to solve problem (1) by using a nonlinear con-
jugate gradient method on the matrix product space Rm×r × Rn×r, which is
substantially different from alternating minimization algorithms for matrix fac-
torization. While both schemes enjoy the benefit of a reduced computational
complexity compared to nuclear norm minimization methods, our method on
the matrix product space is particularly efficient, in comparison with alternat-
ing minimization, for solving the graph-regularized problem (1) when the true
low-rank matrix has entries correlated in a manner close to the given graph
information.

2 Preliminaries

Throughout this paper, we consider undirected graphs with nonnegative weights
to model pairwise similarities between rows and columns of a data matrix. We
denote by U the orthonormal matrix of eigenvectors and Λ the diagonal matrix
of corresponding eigenvalues of a given graph Laplacian matrix L such that
L = UΛUT . As in Rao et al. [4, §5.1], given the Laplacian matrices Lr ∈
Rm×m and Lc ∈ Rn×n of two graphs, we focus on a type of low-rank matrix
exhibiting some row-wise and column-wise similarities that are prescribed by
the graph information via Lr and Lc (or their eigenpairs) as follows

M? = ArZ
?ATc , with Z? = P ?Q?T , (2)

where (P ?, Q?) ∈ Rm×r × Rn×r are random matrices of rank r � min(m,n)
whose columns are i.i.d. Gaussian vectors. In (2), Ar = Urg(Λr), Ac = Ucg(Λc)
and g is a function acting elementwise on a diagonal matrix Λ = Diag((λi))
1 such that g (Λ) = Diag

(
(1/
√

1 + γλi)
)

for some hyperparameter γ > 0. We
assume also that the low-rank matrix M? is only observed on a (small) fraction
of entries Ω ⊂ [[m]]× [[n]]. In order to exploit the given graph information, we add
the graph Laplacian-based regularizers as used in related work (e.g. [4]) to the
standard low-rank matrix completion objective. The model (2) is of particular
interest for graph-regularized matrix completion not only because it models a
wide range of real data matrices whose entries present pairwise similarities, but
also because there is a relationship to the notion of a generalized nuclear norm
of M?. Rao et al. [4] showed that the regularizer RLr

(G) +RLc
(H) is related

to a generalized nuclear norm of X = GHT , depending on the given graph
information through Ar and Ac, and showed via empirical tests with several
types of graphs that when such graph Laplacian matrices are known, solving the
graph regularized problem (1) instead of the standard (graph-agnostic) matrix

1The domain of definition of g is restricted to R+ since graph Laplacian matrices are known
to be positive semi-definite.
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completion problem yields better recovery results. The graph-based regularizers
can be written as RL(Q) = α

2 (‖Q‖2F + γ
∑
i∼j
∑r
k=1Wij(Qik − Qjk)2), where

W is the graph adjacency matrix such that L = Diag(W1) − W. Intuitively,
the second right hand-side term means that adding the graph Laplacian-based
regularizers to the matrix completion objective promotes low-rank solutions that
show pairwise similarities according to the given graphs.

3 Nonlinear Conjugate Gradient Descent on the Matrix
Product Space

In this section, we propose to solve problem (1) with a nonlinear conjugate
gradient descent algorithm by dealing directly with the pair of matrix factors
(G,H) ∈ M := Rm×r × Rn×r. Our method produces iterates of a pair of low-
rank matrix factors in the sense of a conjugate gradient over the matrix product
space. This strategy, in a manner similar to Riemannian optimization on the
manifold of fixed-rank matrices for graph-agnostic matrix completion [6, 7, 8],
updates the low-rank matrix factors simultaneously.

Based on the Euclidean geometry of the product space M, the gradient of
the objective function of (1) at X := (G,H) ∈M is as follows,

gradf(X) =
(
SH + αr(Im + γrLr)G,S

TG+ αc(In + γcLc)H
)
, (3)

where S = PΩ(GHT −M).
Adapting the approach of Mishra et al. [9], we use the diagonal blocks of the

Hessian of f to construct a preconditioner for our gradient-based algorithms.
The Hessian of f at X ∈ M acting on the tangent vector ξ := (ξG, ξH) ∈
TXM≡M is

∇2f(X)[ξ] =

(
PΩ(GξTH + ξGH

T )H + SξH + αr(Im + γrLr)ξG,
PΩ(GξTH + ξGH

T )TG+ ST ξG + αc(In + γcLc)ξH

)
. (4)

We define our preconditioner as an approximate inverse of ξ 7→ (∂
2f(X)
∂G2 [ξ],

∂2f(X)
∂H2 [ξ]),

Precon(ξ) :=
(
ξG(HTH)−1, ξH(GTG)−1

)
. (5)

For the Armijo-based line search (Algorithm 1, line 6), we compute the initial
guess for the step size via the following exact line minimization:

t∗ = argmin
t>0

f(G+ tηG, H + tηH)− f(G,H). (6)

The solution to t∗ is selected from the real positive roots of the derivative of
this quartic function, which can be computed easily. We choose our intial
rank r matrix via the r-SVD of the zero filled matrix M0 := Mij for (i, j) ∈
Ω and 0 otherwise.

Based on the above elements, our algorithm is as follows,
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Algorithm 1 (GRMC) Graph-Regularized Matrix Completion

Input: Subscripts Ω = {(il, jl) : l = 1, .., k}, observed matrix entries PΩ(M)
and rank value r. Parameters α, β.

Output: Matrix estimation X̂.

1: Initialization: X0 := (U0Σ
1/2
0 , V0Σ

1/2
0 ), (U0,Σ0, V0)← r-SVD(M0).

2: repeat
3: Compute the gradient gradf(Xt) using (3).
4: Stopping criterion check with ‖gradf(Xt)‖.
5: Descent direction: compute ηt via the conjugate gradient rule (Hestenes-

Stiefel+) using gradf(Xt) and gradf(Xt−1).
6: Line search and update: find st > 0 via line minimization and Armijo

backtracking; Xt+1 = Xt + stPrecon(ηt) using (5).
7: t← t+ 1.
8: until Stopping criterion satisfied.

4 Numerical Experiments

In this section, we compare our algorithm (with and without preconditioning)
with the alternating minimization method (GRALS [4]) on synthetic data gener-
ated from the model (2). The |Ω| observed entries of M? are uniformly sampled
from [[m]]×[[n]] according to a given sample rate. For experiments in (B) and (C),
the graph information is incorporated in M? using Ar, for which a graph Lapla-
cian matrix Lr (for simplicity, we let Lc = 0 such that Ac = In) is generated
with the prototypical graph model Community using GSPbox [10].

(A) Preliminary tests. We consider completing synthetic low-rank matrices
without any graph information. This corresponds to the case where Lr = Lc = 0
so that Ar and Ac reduce to identity matrices in the model (2).
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Figure 1: Results per iteration under the setting m = n = 300, r = 10, |Ω|/mn =
13%. M? is generated without graph information. (Left) RMSE (test entries);
(Middle) Relative error; (Right) norm of the gradient ‖gradf(X)‖.

Since the data matrices are graph-agnostic, we disable the graph-based reg-
ularizers for both algorithms by setting αr = αc = 0. Figure 1 shows the RMSE
score (on test entries) per iteration given by our algorithm in comparison with
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GRALS [4]; the relative error, measured by ‖Xt−M?‖F /‖M?‖F , and the norm
of gradf(Xt) per iteration of our algorithm.

(B) Graph-agnostic algorithms on low-rank matrices with graph information.
Given data matrices generated with the model (2), an “easy” scenario is when
the sample rate is sufficiently large such that successful recovery is possible even
without the graph regularizers. In such cases, we disable the regularizers by
setting αr = αc = 0 for problem (1). Unlike the results (Figure 1) on graph-
agnostic data matrices, Figure 2 shows that our algorithm is much faster than
GRALS [4] when M? is affected by pairwise correlations w.r.t. the model (2).
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Figure 2: Results per iteration by MC algorithms (αr = αc = 0) under the
setting m = n = 300, r = 10, |Ω|/mn = 30%. M? is generated with non-trivial
graph information (contained in Ar).

(C) GRMC on low-rank matrices with graph information. For experiments with
low sampling rates, we test the graph-regularized algorithms for problem (1) with
active parameters αr, γr > 0, which are selected by grid search. We can observe
from Figure 3 that our algorithm is still faster than GRALS [4] in solving the
graph-regularized problem (1).
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Figure 3: From row 1 to 3: Results per iteration by GR-MC algorithms (αr, γr >
0) under the setting m = n = 300, |Ω|/mn = 10.3%, 17.0% and 23.4%. M? is
generated with non-trivial graph information (contained in Ar).

Conclusion From the experiments presented above, we observed that our non-
linear conjugate gradient method with and without preconditioning on the ma-
trix product space achieves significant speedup in solving the graph-regularized
matrix completion problem (1) on synthetic data compared to the alternating
minimization method (GRALS [4]).
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