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Abstract. In recent years, machine learning techniques have been in-
creasingly applied in sensitive decision making processes, raising fairness
concerns. Past research has shown that machine learning may reproduce
and even exacerbate human bias due to biased training data or flawed
model assumptions, and thus may lead to discriminatory actions. To coun-
teract such biased models, researchers have proposed multiple mathemat-
ical definitions of fairness according to which classifiers can be optimized.
However, it has also been shown that the outcomes generated by some
fairness notions may be unsatisfactory.
In this contribution, we add to this research by considering decision mak-
ing processes in time. We establish a theoretic model in which even per-
fectly accurate classifiers which adhere to almost all common fairness def-
initions lead to stable long-term inequalities due to vicious cycles. Only
demographic parity, which enforces equal rates of positive decisions across
groups, avoids these effects and establishes a virtuous cycle, which leads
to perfectly accurate and fair classification in the long term.

Automatic decision-making via machine learning classifiers carries the promise
of quicker, more accurate, and more objective decisions because automatic mech-
anisms do not foster animosity against any group [1, 2]. Yet, machine learning
systems can indeed reproduce and exacerbate bias that is encoded in the train-
ing data or in flawed model assumptions [1, 2, 3, 4]. For example, the COMPAS
tool, which estimates the risk of recidivism of defendants in the US law system
prior to trial, has been found to have higher rates of false positives for Black
people compared to white people and has thus been called unfair [5]. Similarly, a
tool developed by Amazon to rate the résumés of job applicants assigned higher
scores to men compared to women because successful applicants in the past had
mostly been male [6]. Finally, multiple machine-learning-based credit scoring
systems have emerged that reproduce historical biases and systematically assign
lower credit scores to members of disenfranchised minorities [7].

In general, we consider scenarios where individuals i ∈ {1, . . . ,m} in some
population of size m apply for some positive outcome, such as a pre-trial bail,
a job, or a loan, and a gatekeeper institution decides whether to grant that
outcome, with the interest of accepting only those individuals who will “succeed”
with that outcome, e.g. not commit a crime, succeed in their job for the company,
or pay back a loan. To make that decision, the institution employs a binary
classifier f : {1, . . . ,m} → {0, 1} that predicts whether to grant the outcome,

∗Funding by the CITEC center of excellence (EXC 277) is gratefully acknowledged.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

477



i.e. f(i) = 1, or not, i.e. f(i) = 0. Now, let yi ∈ {0, 1} denote whether an
individual will succeed (yi = 1) or not (yi = 0). Then, the aim of the classifier
is to maximize the share of the population where f(i) = yi.

In our examples, we care how a certain protected group C is treated com-
pared to everyone else. In general, we assume these protected groups to be
pre-defined by society, e.g. via the EU charter of fundamental rights, which for-
bids discrimination based on sex, race, color, ethnic or social origin, religion,
political opinion, and several other features [8]. Formally, let C ⊆ {1, . . . ,m} be
a protected group, let mc := |C|, let ¬C := {1, . . . ,m}\C, and let m¬c := |¬C|.
Then, the fairness notion corresponding to our last two examples is demographic
parity, which requires that the rate of positive decisions is equal across groups,
i.e.

∑
i∈C

f(i)
mc

=
∑

i∈¬C
f(i)
m¬c

[4, 9].
Multiple authors have criticized demographic parity because it decreases ac-

curacy if the base rate of successful people is different across groups [3, 9, 10].
Accordingly, Hardt et al. have proposed the notion of equalized odds which only
requires an equal rate of positive decisions among the people who will succeed
and the people who will not succeed [10], which corresponds to the fairness
notion in the COMPAS example [5].

In addition distributive justice considerations, several authors have proposed
notions of due process, in the sense that any classifier should be considered fair
which performs decisions in a fair way [11]. In particular, several authors have
argued that classifiers should not use features that code the protected group
directly or indirectly [2, 4, 11, 12, 13]. Alternatively, Corbett and Goel have
proposed a two-step classification process. First, a function g : {1, . . . ,m} → R

assigns a risk score to each individual, which should increase monotonously with
the probability to be successful, i.e. g(i) = σ(P (yi = 1)) for some monotonous
function σ (a property also called calibration [14]). Second, the actual classifier
only threshold the risk score, i.e. f(i) = 1 if g(i) ≥ θ and f(i) = 0 otherwise for
some fixed threshold θ ∈ R, thus holding everyone to the same standard [3].

In this contribution, we argue that even if a classifier is perfectly accurate
and is fair according to all fairness notions except demographic parity, we may
still obtain undesirable long-term outcomes. To do so, we establish a simple
dynamical system which assumes that positive classifier decisions have positive
impact on the future success rate of a group, which in turn leads to a higher
chance for positive classifications and so on. We show that this positive feed-
back loop implies stable equilibria where a protected group receives no positive
decisions anymore. We also show that imposing demographic parity breaks this
feedback loop and introduces a single, stable equilibrium which exhibits perfect
accuracy, equality, and fairness according to all notions.

Our model is inspired by prior work of O’Neil, who has investigated exist-
ing automatic decision making systems and found positive feedback loops which
disadvantage protected groups [2]. However, O’Neil did not provide a theo-
retic model. Further, our work is related to prior research by Liu et al., who
have analyzed one-step dynamics in a credit scoring scenario [14] but did not
consider long-term outcomes. Third, Hu and Chen have previously analyzed a
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detailed economic model of the labor market, including long-term dynamics [15]
and found that demographic parity leads to a desirable equilibrium. Finally,
Mouzannar et al. generalized this work simultaneously and independently to us
and analyzed a wide range of scenarios where acceptance decisions influence fu-
ture qualifications [16]. Our work is similar to theirs, but we use a different
model assuming continuous qualification variables, fixed institutional resources,
and specific dynamics, which enables us to derive stronger conclusions.

1 Model

In our model, we assume that every individual i has an objective risk score qti at
time t which is drawn from an exponential distribution1 with mean μt

c if i ∈ C
and with mean μt

¬c otherwise. Further, we assume that the n ≤ m people with
the highest score in each iteration are the ones which will be successful, i.e.
yi = 1 if and only if qti is among the top n at time t. Accordingly, we obtain a
perfectly accurate classifier if we use the scoring function gt(i) = qti and set the
decision threshold θt such that exactly the top n scores are above or equal to it.
Note that our hypothetical classifier conforms to equalized odds because there
are no misclassifications [10], fulfills the calibration, threshold, and accuracy
requirements of Corbett and Goel [3], and does not need access to the group
label, neither directly nor indirectly, thus conforming to all due process notions
of fairness [2, 4, 11, 12, 13].

We estimate the overall number of people who receive a positive classification
inside and outside the protected group via the expected values E[

∑
i∈C f(i)] =

mc ·
∫∞
θt

1
μt
c
·exp(− q

μt
c
)dq = mc ·exp(− θt

μt
c
) and E[

∑
i∈¬C f(i)] = m¬c ·exp(− θt

μt¬c
)2.

We finally assume that the mean for a group improves with a higher rate of
positive classifier decisions in the previous time step according to the following
equation. (

μt+1
c

μt+1
¬c

)
= (1− α) ·

(
μt
c

μt
¬c

)
+ β ·

(
exp(− θt

μt
c
)

exp(− θt

μt¬c
)

)
(1)

where the decision threshold θt is selected as the numeric solution to the equation
n = mc · exp(− θt

μt
c
) +m¬c · exp(− θt

μt¬c
), where the parameter α ∈ [0, 1] quantifies

the score fruction an individual loses in each time step (“leak reate”), and where
the parameter β ∈ R

+ quantifies the score an individual gains for for a positive
classifier decision. Figure 1 (left) visualizes the dynamical system.

Note the connections of our model to the real-world examples mentioned
before. In credit scoring, qti would correspond to the credit score, i.e. the ca-

1Note that our qualitative results can be generalized to other distributions, such as Gaus-
sian or Pareto. We select the exponential distribution here because it only has a single pa-
rameter and thus is easier to analyze. You can find the full analysis in the appendix at
https://arxiv.org/abs/1902.00375 .

2We consider each classifier decision as a Bernoulli trial with success probability P =∫∞
θt

1
μt
c
· exp(− q

μt
c
)dq, yielding a binomially distributed random variable

∑
i∈C f(i) with ex-

pected value mc · P and variance mc · P · (1− P ). Note that the variance gets close to zero if
P is small itself, such that the expected value is a precise estimate for sufficiently small n.
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Figure 1: An illustration of the dynamical system model from Equation 1 for
a population with mc = 100, m¬c = 200, n = 50 successful people, leak rate
α = 0.5, and score β = 5. Equilibria are highlighted with circles. Left: The
model without demographic parity requirement, exhibiting undesirable stable
equilibria at the coordinate axes. Right: The model with demographic parity,
exhibiting a single stable equilibrium on the diagonal.

pability of an individual to pay back a loan. We would plausibly assume that
the score increases with positive classifier decisions because individuals who get
a loan have additional financial resources at their disposal and can use those to
add wealth to their group [14]. Further, we would assume a nonzero leak rate
α because individuals need to cover their expenses which may negatively affect
their capability to pay back a loan.

If we apply our model to pre-trial bail assessment, the score qti would assess
the likelihood of a defendant to not commit a crime until trial. Here, we would
assume that the score decreases with negative classifier decisions because incar-
cerating people from a community may cut social ties and deteriorate trust in
the state, leading to a higher crime rate [2]. This effect can be modeled by a
nonzero leak rate α and a positive score β.

Also note that our model is not necessarily realistic but shows that there exist
contexts where even perfect classifiers can exhibit stable long-term inequality.
We show that context can matter, not that every context conforms to our model.

If we analyze the equilibria of this system, we first note that limμt
c→0 μ

t+1
c =

limμt
c→0(1 − α) · μt

c + β · exp(− θt

μt
c
) = 0, i.e. μ∗

c = 0 is a fix point. Further,
limμ∗

c→0 exp(− θ∗
μ∗
c
) = 0, i.e. no person from the protected group is above the

threshold at that fix point. Accordingly, we can compute the fix point threshold
θ∗ only for the non-protected group, i.e. θ∗ = μ∗

¬c · log(m¬c

n ). By plugging
this into the fix point equation μ∗

¬c = (1 − α) · μ∗
¬c + β · exp(− θ∗

μ∗¬c
) we obtain

μ∗
¬c =

β
α · n

m¬c
, which yields μ∗

¬c = 2.5 for our example in Figure 1 (left). At this
fix point, we obtain a Jacobian of Equation 1 which is 1 − α times the identity
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matrix, i.e. both eigenvalues have an absolute value < 1 for α > 0, implying
stability. In Figure 1 (left) we also see that the basin of attraction is the entire
region above the diagonal, i.e. whenever we start with slight inequality in favor
of the non-protected group, this inequality will get amplified.

In summary, we have shown that, for our exponential distribution model,
there are always undesirable and stable equilibria in which μt

c degenerates to
zero and the non-protected group receives all positive outcomes. This begs
the question: Can we break this undesirable dynamic? Indeed, we can, using
demographic parity.

2 Demographic Parity Dynamics

Demographic parity requires equal acceptance rates across groups, i.e. exp(− θt
c

μt
c
) =

exp(− θt
¬c

μt¬c
) = P for some acceptance rate P and group-specific thresholds θtc and

θt¬c. We obtain P as solution of the threshold equation n = mc · P +m¬c · P ,
i.e. P = n

mc+m¬c
= n

m . By plugging this result into our fix point equation we
obtain μ∗ = μ∗

c = μ∗
¬c = (1 − α) · μ∗ + β · P = β

α · n
m , which yields μ∗ = 5/3

for our example in Figure 1 (right). For this fix point we obtain a Jacobian of
Equation 1 of 1− α times the identity matrix, implying stability.

Overall, demographic parity ensures that the mean for every group converges
to the same point, such that the thresholds θtc and θt¬c become equal as well.
This, in turn, implies that selecting the top-scored people in each group cor-
responds to selecting the top-scored people in the entire population, implying
a classifier that is perfectly accurate and conforms to all notions of fairness,
including demographic parity.

3 Conclusion

In this contribution, we have analyzed a simple dynamic model for automatic
decision making. In particular, our model assumes that people should receive a
positive classifier decision only if their objective risk score is in the top, that the
means of the score distribution differ between the protected group and everyone
else, and that positive decisions improve the mean for the group in the next
time step. This feedback loop becomes a vicious cycle in which even a perfectly
accurate classifier conforming to almost all fairness notions leads to stable in-
equality. Fortunately, we can break this vicious cycle by imposing democratic
parity which instead leads to an equilibrium with perfectly accurate, equal, and
fair classification.

At present, our analysis is limited to a theoretical model assuming an expo-
nential distribution and a simple dynamic model. However, we note that gener-
alizations to other distributions are possible. Further, we note that our findings
are consistent with practical application scenarios [2] and other theoretic studies
[15, 16].
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Overall, we conclude that our findings give reason to re-think notions of
fairness in terms of mid- and long-term outcomes and reconsider demographic
parity as a helpful intervention whenever decision making systems are embedded
in vicious cycles. Otherwise, even well-intended and well-constructed systems
may stabilize and exacerbate inequality.
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