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Fig. 1: (a) SPGF Feature Extraction Details, (b) TimeNet-based Feature Extrac-
tion. TimeNet (TN) is shown unrolled for L = 3. (Best visible when zoomed.)

2.2 TimeNet-based Feature Extraction (zT )

We consider extracting hierarchical features from TimeNet [1, 2]. TimeNet is a
pre-trained off-the-shelf feature extractor for univariate time series. It consists of
three hidden layers with 60 Gated Recurrent Units (GRUs) each. The univariate
input time series is mapped by TimeNet to 180-dimensional feature vector such
that n2 = 180, where each dimension corresponds to final output of one of the
60 GRUs in the 3 recurrent layers. TimeNet has been shown to be effective for
diverse time series of varying length (L ≤ 512) across diverse domains.

TimeNet is the encoder part of the autoencoder consisting of an encoder
RNN fE and a decoder RNN fD trained simultaneously on 24 diverse time
series datasets using unsupervised sequence-to-sequence learning framework as
shown in Figure 1(b). The parameters WE of the encoder RNN fE is obtained
by training the autoencoder via reconstruction task so that for input x1...L,
the target output time series xL...1 = xL, xL−1, ..., x1 is reverse of the input.
The RNN encoder fE maps the univariate input time-series x1...L non-linearly
to a fixed-dimensional feature representation zL at the L-th time step: zL =
fE(x1...L;WE). The feature vector zL is a concatenation of the hidden states
zL,l (l = 1, 2, 3) from the three layers. During training, this is followed by a
non-linear mapping of zL to univariate time series: x̂L...1 = fD(zL;WD) via
an RNN decoder fD; where WE and WD are the parameters of the encoder
and decoder, respectively. The mean squared reconstruction error is used as loss
function to jointly train the encoder (TimeNet) and decoder. Since the decoder
relies on zL as the only input to reconstruct the time series, the encoder gets
trained to capture all the relevant information in the time series x1...L into the
fixed-dimensional vector zL. We, therefore, use zL ≡ zT ∈ R180, i.e. use the
final hidden state of TimeNet zL after processing x1...L as the feature vector
extracted via TimeNet.
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2.3 Using feature vector for TSC

Consider a labeled training set with N instances {xi1...L, yi}Ni=1 of univariate
time series xi1...L and corresponding class label yi. The (n1 + n2)-dimensional
feature vector representation ziST of xi1...L is obtained as ziST = [ziS , z

i
T ]. Thus,

we convert the training set to SPGF-TN feature space to obtain {ziST , yi}Ni=1.
The zST features are appropriately z-normalized and used to train an SVM-
based classifier with Radial Basis Function (RBF) kernel (similar to [1]). The
hyperparameters γ (kernel coefficient) and ν (rejection rate) of SVM-RBF are
obtained using 5-fold cross-validated grid search on the training set over the
logarithmic grid of both γ and ν in range 10−3 to 103.

3 Experiments and Analysis

We consider a diverse subset of the UCR TSC Archive to test the generality of the
SPGF-TN features and corresponding classifier SPGF-TN-C using same setup
and data splits as in [1], and consider DTW-C [5], BOSS [6] and TimeNet (TN-
C) [1] as baselines for comparison. We consider number of windows nω = 10,
n1 = 392 and n2 = 180 such that we obtain 572-dimensional feature vector via
SPGF-TN, i.e. zST ∈ R572. We obtain a total n1 = 392 SPGF features: 54 in
temporal, 48 in frequency, and 290 in wavelet domains. Overall, SPGF comprises
248 micro-level and 144 macro-level features. For instance, if nω = 3 and kurtosis
values for the three windows are 19.09, 4.75 and 3.31 respectively, the value of
the micro-level feature mean of windowed kurtosis in temporal domain is 9.05
and that of standard deviation of windowed kurtosis is 8.72. The error rates
given by 1−accuracy are summarized in Table 1. The win/tie counts depict the
number of data sets in which the respective model individually performs better
or is equivalent to the best of DTW-C and BOSS. We observe that SPGF-TN-C
outperforms both DTW-C and BOSS in 22/30 of the cases. We further observe
that SPGF-TN-C is better than either of SPGF-C or TN-C. This proves the
advantage of combining deep learning based features (TN) and signal processing
based features (SPGF), and the richness of the feature space of SPGF-TN. In Fig.
2 (a),(b), we further illustrate this by mapping the 500-dimensional (L = 500)
original time series test instances and the corresponding 572-dimensional feature
vectors of FordB dataset to 2-D space using t-SNE (blue and green colors depict
class labels): we find a noticeable separation in the two classes in the SPGF-TN
space (Fig. 2(b)) while no separation in the original space (Fig. 2(a)).

Further, we note that sequential processing in RNNs and various transforma-
tions in SPGF are linear in the length L of time series. Therefore, the inference
cost of SPGF-TN is linear w.r.t. time series length ≈ O(L). Fig. 2(c) depicts
this behavior in terms of execution times of SPGF, TimeNet, and SPGF-TN
over test time series of varying lengths2. This is of high practical importance
as algorithmic complexity can play a major role in deciding the selection of ap-
propriate TSC technique [5]. For instance, the state-of-the-art TSC algorithm

2Experiments done on system with Intel Xeon processor with 2.60 GHz and 128 GB RAM
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COTE takes ensemble of 35 classifiers [5], and is computationally very expensive.
Similarly, BOSS [6] has quadratic inference complexity in length of time series.

Table 1: Comparison of Classification Error Rates on UCR TSC Datasets.

Dataset L DTW-
C [5]

BOSS
[6]

SPGF-
TN-C
(ours)

TN-C
[1]

SPGF-
C

Synthetic Control 60 0.017 0.033 0.017 0.013 0.023
PhalangesOC 80 0.239 0.228 0.184 0.207 0.187
DistalPhalanxOAG 80 0.228 0.252 0.163 0.223 0.173
DistalPhalanxOC 80 0.232 0.272 0.155 0.188 0.157
DistalPhalanxTW 80 0.272 0.324 0.218 0.208 0.223
MiddlePhalanxOAG 80 0.253 0.455 0.220 0.210 0.228
MiddlePhalanxOC 80 0.318 0.220 0.330 0.270 0.355
MiddlePhalanxTW 80 0.419 0.455 0.363 0.363 0.371
ProximalPhalanxOAG 80 0.215 0.166 0.151 0.146 0.151
ProximalPhalanxOC 80 0.210 0.151 0.124 0.175 0.134
ProximalPhalanxTW 80 0.263 0.200 0.193 0.195 0.200
ElectricDevices 96 0.376 0.201 0.275 0.267 0.306
MedicalImages 99 0.253 0.282 0.241 0.250 0.258
Swedish Leaf 128 0.157 0.078 0.064 0.102 0.064
Two Patterns 128 0.002 0.007 0.000 0.000 0.221
ECG5000 140 0.075 0.059 0.058 0.069 0.060
ECGFiveDays 136 0.203 0.000 0.051 0.074 0.047
Wafer 152 0.005 0.005 0.000 0.005 0.000
ChlorineConcentration 166 0.350 0.339 0.279 0.269 0.306
Adiac 176 0.391 0.235 0.212 0.322 0.246
Strawberry 235 0.062 0.024 0.049 0.062 0.047
Cricket X 300 0.236 0.264 0.264 0.300 0.351
Cricket Y 300 0.197 0.246 0.280 0.338 0.387
Cricket Z 300 0.180 0.254 0.231 0.308 0.318
uWaveGestureLib X 315 0.227 0.238 0.171 0.214 0.256
uWaveGestureLib Y 315 0.301 0.315 0.237 0.311 0.321
uWaveGestureLib Z 315 0.322 0.305 0.226 0.281 0.286
Yoga 426 0.155 0.082 0.145 0.160 0.177
FordA 500 0.341 0.07 0.068 0.219 0.058
FordB 500 0.414 0.289 0.108 0.263 0.158

Wins or ties over both
DTW-C & BOSS

- - - 22/30 16/30 15/30
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Fig. 2: t-SNE scatter plot for FordB test dataset: (a) Raw Time series (b) SPGF-
TN features; (c) Execution times of SPGF, TimeNet, and SPGF-TimeNet.

4 Conclusion

We have proposed SPGF-TimeNet for extracting generic features from time
series. SPGF-TimeNet combines the advantage of signal processing and deep
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learning to yield generic feature set that are observed to be useful for diverse time
series classification (TSC) tasks with variable-length time series in a domain-
agnostic way. It ensures effective and efficient learning particularly due to its
richness of the feature space. It outperforms existing state-of-the-art in more
than 73% of datasets considered. In future, it will be interesting to evaluate
SPGF-TimeNet for multivariate TSC tasks (e.g. as in [2]). We also plan to
further augment the feature space of SPGF using graph signal processing and
dictionary learning techniques, and also train a bigger TimeNet to enhance the
feature space of SPGF-TimeNet. The sequential processing in RNNs makes it
expensive to train TimeNet for long time series - we plan to exploit convolution
neural networks based TimeNet that is faster to train (e.g. as in [3]).
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