
Nonnegative matrix factorization

with polynomial signals

via hierarchical alternating least squares

Cécile Hautecoeur and François Glineur∗

Université catholique de Louvain - CORE and ICTEAM Institute
B-1348 Louvain-la-Neuve - Belgium

Abstract. Nonnegative matrix factorization (NMF) is a widely used tool
in data analysis due to its ability to extract significant features from data
vectors. Among algorithms developed to solve NMF, hierarchical alternat-
ing least squares (HALS) is often used to obtain state-of-the-art results.
We generalize HALS to tackle an NMF problem where both input data and
features consist of nonnegative polynomial signals. Compared to standard
HALS applied to a discretization of the problem, our algorithm is able to
recover smoother features, with a computational time growing moderately
with the number of observations compared to existing approaches.

1 Nonnegative matrix factorization with polynomial data

Nonnegative Matrix Factorization (NMF) is a linear dimensionality reduction
technique designed to extract characteristic features from data sets of non-
negative vectors [1],[2] using a part-based representation. Besides feature ex-
traction, NMF techniques compress data while filtering the noise. Their perfor-
mances can be improved using a priori knowledge on the data, such as sparsity
[3], smoothness, orthogonality [4], etc.

In this work we assume that input data are continuous nonnegative signals,
and we factorize them using linear combinations of low-degree nonnegative poly-
nomials, generalizing classical NMF. The use of low-degree polynomials is moti-
vated by their ability to describe smooth signals and their efficient parametriza-
tion (via a list of coefficients in a well-chosen basis).

1.1 Nonnegative matrix factorization (NMF)

Given a data matrix Y ∈ R
m×n, the goal of NMF is to recover matrices A ∈

R
m×r
+ and X ∈ R

r×n
+ such that Y ≈ AX, where rank r of the approximation

is typically much smaller than m and n. Viewing each column of the input Y

as an observation y:i, NMF expresses each of these n observations as a linear
combination (with coefficients in X) of r well-chosen common basis elements a:k
(columns of A). Several cost functions can be considered to measure accuracy
of the approximation, and in this work we focus on the Frobenius distance:

min
A∈R

m×r

+
,X∈R

r×n

+

||Y −AX||2F = min
a:k∈R

m

+ ,xki≥0
∀ 1≤k≤r,1≤i≤n

∑n

i=1||y:i −
∑r

k=1 a:kxki||
2
2 .

∗This work was supported by the Fonds de la Recherche Scientifique - FNRS and the Fonds
Wetenschappelijk Onderzoek - Vlaanderen under EOS Project no 30468160.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

125

This problem, with a non-convex objective function, is proven to be NP-Hard in
[5]. It is however convex with respect to A or X, hence many NMF algorithms
consist of (approximately) solving the problem alternatively on both matrices.

1.2 Hierarchical Alternative Least Squares (HALS)

To perform one iteration of HALS [6], rather than optimizing over the whole
matrix A, one successively optimizes over each of its columns a:j separately,
using the exact closed-form formula below (obtained as the minimizer of a convex
quadratic function in a:j projected on the nonnegative orthant). Then a similar
update is performed over each row xj: of X, before repeating the whole process.

a:j =

[

Y x⊤
j: −

∑

k 6=j a:kxk: x
⊤
j:

xj:x
⊤
j:

]

+

xj: =

[

a⊤:jY − a⊤:j
∑

k 6=j a:kxk:

a⊤:ja:j

]

+

.

HALS is frequently used to obtain state-of-the-art results for NMF (see e.g. [7]).

1.3 NMF with polynomial signals (NMF-P) and previous work

In this work, we consider both the input data and the sought basis elements
to be nonnegative univariate polynomial signals. Let PD

+ (I) be the set of all
degree D polynomials that are nonnegative on interval I. Assuming that both
D and I are known in advance, the NMF problem with polynomial signals
(NMF-P) considers that each of the n columns of the input data Y ∈ R

m×n

is an observation of a nonnegative polynomial yi(t) ∈ PD
+ over m discretization

points {tτ}
m
τ=1, potentially with some noise added, i.e. that yτ,i = yi(tτ) + nτ,i.

It is then natural to assume that the basis elements, i.e. the columns of A, are
also observations of some nonnegative polynomials, hence that aτ,j = aj(tτ)
for some polynomials aj(t) ∈ PD

+ (I). NMF-P consists in computing the r best
polynomials {aj(t)}

r
j=1 and the best nr nonnegative weights X ∈ R

r×n
+ .

NMF-P was recently considered by Debals et al. [8], who propose to solve it
as a standard non-linear least-squares problem using well-chosen parametriza-
tions to handle the non-negativity constraints. Parametrizing the nonnegativity
conditions on weights X is straightforward with xij = h2

ij ∀i, j (componentwise
square). To parametrize matrix A, i.e. the coefficients of the nonnegative basis
polynomials aj(t), they use from [9] (note that from here we fix I = [−1, 1], as
this interval can always be obtained after an appropriate change of variable):

f ∈ PD
+ ([−1, 1]) ⇔ f(t) = f1(t) + (1− t2)f2(t) f1 ∈ PD

+ (R), f2 ∈ PD−2
+ (R).

Moreover, it is well-known that h ∈ PD
+ (R) is equivalent to h(t) =

∑

i(hi(t))
2

(called a sum-of-squares (SOS) representation). Actually, based on [9], the au-
thors of [8] state that it is enough to impose f1 and f2 to be square polynomials.

This Least-Squares approach, which we will denote LS, does not perform very
well for standard NMF (where state-of-the-art methods use alternating schemes
[10, 6]). However, for NMF-P, LS reduces the number of unknowns from mr+nr

to (D + 1)r + nr, which is significant when the number of discretization points
is large (m ≫ D) and partially explains the good performance reported in [8].

The present work will instead use an alternating scheme to solve NMF-P.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

126

2 Two generalizations of HALS to NMF-P

Recall that columns of Y andA are (observations of) polynomials in PD
+ ([−1, 1]).

For simplicity, we denote them as yi(t) and aj(t), t ∈ [−1, 1]. We can either
consider that the coefficients of polynomials yi are known (or obtained via re-
gression), or that only evaluations at m discretized times {τj}

m
j=1 are accessible,

leading to two different cost functions to minimize during each HALS iteration:
n
∑

i=1

∫ 1

−1

(

yi(t)−
∑r

k=1ak(t)xk,i

)2
dt

coefficients known, integral case

and

n
∑

i=1

m
∑

j=1

(

yi(τj)−
∑r

k=1ak(τj)xk,i

)2

only observations, sum case

.

2.1 Integral case: PI-HALS (coefficients of input polynomials known)

Evaluating a polynomial at t can be written as p(t) = π(t)p where p is a column
vector of coefficients in a fixed basis of polynomials (e.g. monomials), and π(t)
is a row vector containing these basis polynomials evaluated at t. Introducing
residuals ei(t) = yi(t)−

∑r

k=1 ak(t)xk,i, we define the following (quadratic) cost:

n
∑

i=1

∫ 1

−1

ei(t)
2dt =

n
∑

i=1

∫ 1

−1

(π(t)ei)
2dt =

n
∑

i=1

e⊤i Mei with M =

∫ 1

−1

π(t)⊤π(t)dt.

Letting the matrices of coefficients of Y and A respectively be Z ∈ R
(D+1)×n

and B ∈ R
(D+1)×r (with columns b:j), the derivatives of this cost C are:

∂C

∂b:j
= −2M

(

Zx⊤
j:−

∑r

k=1 b:kxk:x
⊤
j:

) ∂C

∂xj:
= −2

(

b⊤:jMZ−
∑r

k=1 b
⊤
:jMb:kxk:

)

which produces the following generalized HALS updates for NMF-P:

b:j =

[

Zx⊤
j: −

∑

k 6=j b:kxk: x
⊤
j:

xj:x
⊤
j:

]

PD

+
([−1,1])

xj: =

[

b⊤:jMZ −
∑

k 6=j b
⊤
:jMb:kxk:

b⊤:jMb:j

]

+

.

Updating the rows xj: of X is easy and similar to the usual HALS. For the
polynomials inA (i.e. their coefficients b:j), we need to compute a projection onto
the set of non-negative polynomials, which is not straightforward. We rely on the
sum-of-squares approach described in section 1.3 and compute the projection of
a given polynomial p(t) = π(t)p as a (convex) quadratic minimization problem
over x(t) = π(t)x parameterized by two SOS polynomials q(t) and r(t):

min
x

(x− p)⊤M(x− p) such that x(t) = q(t) + (1− t2)r(t); q(t), r(t) ∈ SOS.

−1.0 −0.5 0.0 0.5 1.0

0

1

2

3

4

5
Polynomial g
Projection of g onto
the nonnegative set

Fig. 1: Example of projection onto
the set of nonnegative polynomials.

As the set of univariate sum-of-squares poly-
nomials is a convex cone that can be repre-
sented with a linear matrix inequality [11],
our projection can be computed exactly and
efficiently as the solution of a semidefinite
optimization problem (we used the MOSEK
8.1 solver). To the best of our knowledge this
projection onto nonnegative univariate poly-
nomials has not been studied before. Figure
1 illustrates such a projection.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

127

2.2 Sum case: PS-HALS (input polynomials known via observations)

Updates for this case are similar to the original HALS presented in section
1.2, with the difference that matrix A is parameterized as A = ΠB where
Π ∈ R

m×(D+1) is a fixed matrix (made of m rows π(τj) stacked vertically),
and B ∈ R

(D+1)×r is the unknown matrix of polynomial coefficients. Using
pseudo-inverse Π† = (Π⊤Π)−1Π⊤, Π̂ = Π⊤Π and P1 = PD

+ ([−1, 1]), we have:

b:j =

[

Π†Y x⊤
j: −

∑

k 6=j b:kxk: x
⊤
j:

xj:x
⊤
j:

]

P1

xj: =

[

b⊤:jΠ
⊤Y − b⊤:jΠ̂

∑

k 6=j b:kxk:

b⊤:jΠ̂b:j

]

+

.

3 Preliminary numerical results

We perform a preliminary performance study of our algorithms PI-HALS and
PS-HALS, specifically designed to handle NMF-P with polynomial signals, and
compare them to standard HALS and LS. Synthetic data is used: to create
Y we randomly select r nonnegative polynomials on [−1, 1] and evaluate them
on m points to form matrix A, while matrix X contains random nonnegative
numbers. We then create the data Y = AX + N where N ∈ R

m×n contains
additive Gaussian noise with a given SNR. As our PI-HALS algorithm requires
the coefficients of the polynomials in Y , these are estimated via regression.
In our experiments, we use a Chebyshev basis to represent polynomials and,
when applying HALS (for both the integral and the sum case), we update matrix
X several times before alternating, as suggested in [7].

3.1 Quality of the recovery of polynomial signals

We first study how well the original polynomial signals are recovered; we choose
here m = n = 100, r = 4 and D = 6. Figure 2 (left) shows that in the noiseless
case, all algorithms are able to perfectly recover the original polynomials1 in A.

−1.0 −0.5 0.0 0.5 1.0
0

1

2

3 A
PI-HALS
PS-HALS
LS
HALS

−1.0 −0.5 0.0 0.5 1.0
0

2

4

Fig. 2: Example of recovered polynomials. Left: noise-free case, Right: noisy case.

In the noisy case (Figure 2, right), with a signal-to-noise ratio (SNR) equal to
10 dB, features recovered by polynomial-based algorithms (PI-HALS, PS-HALS
and LS) are all very close to the true signals, and much smoother than when
original HALS is used, demonstrating the usefulness of NMF-P.

1Since a factorization is defined up to permutations and scaling of the columns of A and
rows of X, some care is needed when considering a candidate solution Ā: we observe the
matrix Ā = A1Q where A1 is the recovered matrix and Q ∈ R

r×r minimizes ||A1Q−A|| .

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

128

3.2 Comparison with the least-square approach

Figure 3 below displays the evolution of the approximation error after each iter-
ation, using the same noisy data as above. We report the ’true’ error computed
w.r.t. the original polynomials used to create data (before noise was added).
Costs for (PS-HALS), (HALS) and (LS) were scaled by a factor 2

m
to become

comparable with the integral used by (PI-HALS).

100 101 102 103

iteration

101

102

er
ro
r

Evolution of the error at each iteration
HALS
PI-HALS
PS-HALS
LS

Fig. 3: Evolution of the error after each iteration.

We observe that the three polynomial-based methods have similar results on the
original data, while HALS leads to an higher error. This observation is confirmed
when the algorithms are run several times on different problems. Figure 4 illus-
trates the mean approximation error obtained when the number of discretization
points m increases (left) or when the number of observations n increases (right),
with D = 12, r = 4 and SNR = 20 dB. We observe that polynomial-based
method are better than HALS in general but especially when m is high or n is
low.

102 103
number of discretization points

10−3

10−2

10−1

er
ro
r

Mean approximation error
HALS
PI-HALS
PS-HALS
LS

102 103
number of observations

10−2

10−1

er
ro
r

Mean approximation error
HALS
PI-HALS
PS-HALS
LS

Fig. 4: Error for increasing m (left) and n (right). Mean over 10 runs/10 initializations.

102 103 104
number of observations

10−2

10−1

100

101

se
co
nd

s

Time spent per iteration
HALS
PI-HALS
PS-HALS
LS

Fig. 5: Spent time for increasing m = n

(mean over 10 runs/10 initializations).

To study computational performance
we now run each algorithm during 20
iterations for an increasing number of
observations and discretization points
(m = n), with D = 12, r = 4 and
SNR = 20 dB. Figure 5 illustrates that
one iteration of HALS has O(mn) com-
plexity, while for LS it is only O(n) [8].
For our methods, on the other hand,
time spent in computations increases

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

129

very moderately with m = n, because our algorithms spend a large fraction
of their time on the projection step, which does not depend on m, neither n.

4 Conclusion and discussion

We have shown that extending NMF to handle polynomial signals directly en-
ables recovery of smoother features and is less sensitive to noise than standard
HALS applied to discretized signals.

We have presented two new algorithms to perform NMF with polynomial
signals, and showed that they provide accurate results. Another advantage
compared to existing methods is that their computation times only increase
moderately with the problem size, making them more interesting to deal with
large-scale problems (i.e. with large numbers of observations or discretization
points) compared to the previously proposed least-squares approach from [8].

Our algorithms are naturally well-suited to deal with data originating from
nonnegative polynomials. Adapting the methods to other nonnegative interpo-
lating functions, such as splines, would be an interesting topic for future research.

References

[1] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788, 1999.

[2] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari. Nonnegative

matrix and tensor factorizations: applications to exploratory multi-way data analysis

and blind source separation. John Wiley & Sons, 2009.

[3] Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints. Journal

of machine learning research, 5(Nov):1457–1469, 2004.

[4] Seungjin Choi. Algorithms for orthogonal nonnegative matrix factorization. Neural Net-

works IJCNN, pages 1828–1832, 2008.

[5] Stephen A Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal

on Optimization, 20(3):1364–1377, 2009.

[6] Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. Hierarchical ALS algorithms for
nonnegative matrix and 3d tensor factorization. In International Conference on Indepen-

dent Component Analysis and Signal Separation, pages 169–176. Springer, 2007.

[7] Nicolas Gillis and François Glineur. Accelerated multiplicative updates and hierarchical
ALS algorithms for nonnegative matrix factorization. Neural computation, 24(4):1085–
1105, 2012.

[8] Otto Debals, Marc Van Barel, and Lieven De Lathauwer. Nonnegative matrix factor-
ization using nonnegative polynomial approximations. IEEE Signal Processing Letters,
24(7):948–952, 2017.

[9] Victoria Powers and Bruce Reznick. Polynomials that are positive on an interval. Trans-
actions of the American Mathematical Society, 352(10):4677–4692, 2000.

[10] Hyunsoo Kim and Haesun Park. Nonnegative matrix factorization based on alternating
nonnegativity constrained least squares and active set method. SIAM journal on matrix

analysis and applications, 30(2):713–730, 2008.

[11] Grigoriy Blekherman, Pablo A Parrilo, and Rekha R Thomas. Semidefinite optimization

and convex algebraic geometry. SIAM, 2012.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

130

