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Abstract.

We propose Very Simple Classifier (VSC) a novel method designed to in-
corporate the concepts of subsampling and locality in the definition of
features to be used as the input of a perceptron. The rationale is that lo-
cality theoretically guarantees a bound on the generalization error. Each
feature in VSC is a max-margin classifier built on randomly-selected pairs
of samples. The locality in VSC is achieved by multiplying the value of the
feature by a confidence measure that can be characterized in terms of the
Chebichev inequality. The output of the layer is then fed in a output layer
of neurons. The weights of the output layer are then determined by a regu-
larized pseudoinverse. Extensive comparison of VSC against 9 competitors
in the task of binary classification is carried out. Results on 22 benchmark
datasets with fixed parameters show that VSC is competitive with the
Multi Layer Perceptron (MLP) and outperforms the other competitors.
An exploration of the parameter space shows VSC can outperform MLP.

1 Introduction

The notion of locality in learning has a long history. Local models appeared
first in density-estimation [8] and regression models [7], where kernels were used
to control the influence of the samples to the overall model. The classical k-
Nearest Neighbors classifier [3] is inherently a local method. In Nearest Neighbor
and derived methods the attention focuses on ways of defining the distances or
metrics to be used to find the set of neighbors and on the transformations of
the space [4]. Moreover, theoretical results on k-Nearest Neighbors [5] gave a
glimpse of the power of local models and, more generally, Vapnik and Bottou
[2] established a fundamental result demonstrating that the local versions of
base learners have better bounds on the generalization errors. The Vapnik and
Bottou result leaves us with an effective strategy to improve classifiers by adding
locality.

In this paper we present a novel approach to binary classification that is
based on the idea of locality, and combine it with a classifier architecture typical
of deep approaches. The main idea is to use a number of models to define
linear separators, combine them with a confidence function that incorporates
the information about the position of the samples and that uses the results
as input of a single-layer perceptron. The rationale of the approach, which is
motivated by the theoretical bound on local models given by Vapnik and Bottou,
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Algorithm 1 VSC learning algorithm

Input: training data X, labels y, number of hyperplanes k, regularization factor λ
P Ð select k pairs of examples of opposite class
for j ď k do

hj Ð compute max margins hyperplanes for pj P P
end for
for i ď |X| do

for j ď k do
X1ri, js Ð tanhpxx̂i,hjyq Cpj pxiq

end for
end for
wÐ pX1TX1 ` λIq´1X1Ty

is to leverage the notion of locality to achieve good features that can be used in
multi-layered classifiers.

In order to test the effectiveness of this idea, we defined a “concept” classifier
called Very Simple Classifier (VSC) that incorporates an extreme version of the
approach. In the case of VSC the local models are built using just 2 samples,
the confidence function is based on geometric considerations and we show that it
modulates locality in a way that is based on the generalized Chebichev inequal-
ity. Finally the parameters of the final perceptron are found with a regularized
pseudo inverse. VSC is tested on a battery of benchmark datasets against rele-
vant competitors. Despite its simplicity, the results of VSC are surprisingly good,
showing that VSC is competitive with the Multi Layer Perceptron (MLP) and
it outperforms other classifiers in the binary classification task. An exploration
in the parameter space completes the comparison with MLP.

2 Very Simple Classifier

Let us assume an input normed space Rn and a set (of labels) L “ t´1, 1u,
and N samples pxi,yiq P S ˆ L for i “ 1, . . . , N such that the xi are i.i.d.
variables of an unknown distribution fpxq. Let yi “ ypxiq with y : S Ñ L be an
unknown function that associates the sample xi with its label yi.

From a structural point of view, VSC is similar to a three-layer MLP with
n` 1 nodes in the first layer, k ` 1 nodes in the second, and just one in the
third. The extra nodes in the first and second layer are used as biases. Proce-
durally VSC introduces significant novel differences based on subsampling and
locality. The main steps of VSC are (I) the pair selection procedure, (II) the
pre-computation of the separating hyperplanes, (III) the confidence measure for
the hyperplanes, and (IV) the regularized weights learning.

As shown by the pseudo-code in Algorithm 1, the learning procedure starts
with the selection of k pairs of examples p :“ px`p ,x

´
p q such that ypx`p q “ 1 and

ypx´p q “ ´1. Following the parallel with the MLP, the precomputed hyperplanes
are used as fixed weights for the network between the first and the second layer.
The activation function of the second layer is an hyperbolic tangent which is
down-weighted by a confidence measure (to be defined in Section 2.2). Being
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the weights fixed, the output of the second layer can be computed without further
learning procedures. With the matrix of the outputs X1 and the labels for the
training set, the weights between the second and the third layer can be easily
learned with the product of pseudo inverting the matrix X1 with the vector of
labels y.

2.1 Hyperplane selection

Given a pair of samples p :“ px`p ,x
´
p q in the input space, a good separating

hyperplane is the one that maximizes the margin. In this simple condition
the maximum margin separating-hyperplane hp is uniquely identified as the
hyperplane perpendicular to vp “ x`p ´ x´p and passing for their center cp “

px`p ` x´p q{2. hp “ pv1
p, . . . ,v

n
p , xvp, cpyq

T where x¨, ¨y is the inner product.
There are, however, infinite formulations for this hyperplane. The canonical
formulation for hp by VSC is the hyperplane with unitary norm.

2.2 Hyperplane confidence

Each hyperplane selected at the previous stage depends only on 2 training sam-
ples, it is therefore important to add a confidence measure to limit its influence
area. Let x`p and x´p be the samples used to build the hyperplane, and let x be
the point to be classified with hp. Then the confidence measure Cp : Rn Ñ p0, 1q
is

Cppxq “ σ

ˆ

d

||x`p ´ x||2
`

d

||x´p ´ x||2
´

2d

d2

˙

where d “ ||x`p ´ x´p ||{2 and σ is the sigmoid function σpxq “ 1{p1` e´xq. In
the implementation a small ε “ 0.01 was added to each denominator in order to
avoid divisions by zero. The geometric intuition is that the confidence of hp for
the point x is high if x is close to x`p or to x´p . The value of d plays the role of
smoothing the confidence around x`p and x´p , such that the higher the value of
d, the wider and smoother the confidence region will be.

2.3 Learning the hyperplane weights

Once the hyperplanes H of the first layer have been selected, we can construct the
matrix X1: X1 “ px1i,jq “

`

tanhpxx̂i,hjyq Cpj
pxiq

˘

where x̂ “ p1,x1, . . . ,xnqT .
X1 is an N ˆ k matrix where each entry x1i,j is the result of the prediction for
i-th training example xi with only the j-th hyperplane hj and the confidence
measure. The weights for each hyperplane could be obtained by inverting the
matrix X1. In most cases, however, k ‰ N , thus X1 is not square and invertible.
In order to compute the hyperplanes weights VSC takes advantage of the reg-
ularized pseudoinverse, also referred to as Tichonov regularization. This choice
is common in RBF networks and it has been used more recently in Extreme
Learning machines (ELM) [6] where the emphasis is on the speed of the com-
putation. Thus w “ pX1TX1 ` λIq´1X1Ty where I is the identity matrix of size
NˆN . The effect of λ is to smooth the decision boundary, otherwise very prone
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to overfit: the higher the λ, the higher will be the regularization. In order to
enhance the expressiveness of the VSC, a bias is added to this computation by
adding 1 at the beginning of each line of the matrix X1. The decision function
for the VSC is thus:

y
VSC
pxq “ sign

˜

ÿ

pPP

wptanhpxx̂,hpyq Cppxq

¸

`w0.

3 Results

VSC has been implemented in Python 2.7 following the scikit-learn standards.
This choice allowed us to easily compare the VSC with other 8 well-known
classifiers implemented in the scikit-learn suite, i.e. MLP, SVM with linear and
RBF kernel, AdaBoost, naive Bayes, decision tree, random forests, and k-nearest
neighbours classifiers. Moreover, we compared the performances of VSC with
the ones of the Python implementation1 of ELM [6].

The experiments have been conducted on 22 datasets retrieved from the Keel
archive [1] with the only criteria of being binary classification problems with no
categorical features. The data have been normalized by removing the mean and
scaling to unit variance for each feature. The performances have been assessed
with a 10-fold cross validation. The folds have been randomly generated keeping
the positive-negative proportion unchanged. No parameter selection has been
done, neither for VSC nor for the competitors. Thus all the experiments have
been conducted with the parameters that are provided as default in the scikit-
learn implementation. The SVM with RBF kernel has been trained with fixed
γ “ 1 instead of the adaptive version proposed in the implementation in order
to be consistent with the choice of fixing the meta-paramenters of the classifiers.
The F1 score has been preferred to the accuracy metric for presenting the results
for its better robustness to unbalanced classes. The statistical significance is
assessed with a paired two-tailed t-test with significance level α “ 0, 05.

Each classifier has been trained with its default parameters. In particular for
VSC we have used k “ 100 hyperplanes and regularization factor λ “ 1, these
values have been decided a-priori, before the testing phase. For a fair comparison
MLP and ELM have been trained with 100 hidden nodes. Table 1 reports the
complete results, and a graphical representation of the statistically-significant
results is shown in Figure 1a.

In order to test the effect of the confidence measure in VSC, we performed
additional runs on the same 22 datasets of a modified version of VSC with
confidence identically forced to 1, namely Cppxq ” 1. The comparison with the
modified VSC is showed in Figure 1b. With the exception of 7 datasets VSC
outperforms the modified VSC. In particular, the only dataset in which the VSC
is outperformed by the modified version with statistical significance is monk-2,
which is a synthetic dataset with discrete features that, as shown in Table 1, is
particularly hard for VSC.

1https://github.com/dclambert/Python-ELM
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app 0.91 0.87 0.92 0.92 0.92 0.89 0.92 0.81İ 0.90 0.87
ban 0.91 0.91 0.91 0.76İ 0.71İ 0.89İ 0.90İ 0.91 0.71İ 0.86İ

ban 0.71 0.65 0.77 0.66 0.73 0.64İ 0.67 0.70 0.08İ 0.55İ

bup 0.77 0.78 0.76 0.74 0.76 0.75 0.66İ 0.72 0.51İ 0.71İ

coi 0.96 0.96İ 0.97İ 0.97 0.9 0.96İ 0.97İ 0.96İ 0.10İ 0.94İ

hab 0.81 0.84Ÿ 0.84Ÿ 0.83 0.84 0.80 0.82 0.83 0.84Ÿ 0.73İ

hea 0.87 0.85 0.80İ 0.82İ 0.857 0.82İ 0.86 0.83İ 0.86 0.77İ

hep 0.90 0.86 0.91 0.93 0.87İ 0.90 0.90 0.80 0.64İ 0.84İ

ion 0.93 0.92 0.89 0.93 0.92 0.94 0.89İ 0.90 0.91 0.90
mag 0.88 0.90Ÿ 0.90Ÿ 0.88 0.85İ 0.90Ÿ 0.89 0.87İ 0.81İ 0.86İ

mam 0.82 0.83 0.83 0.84 0.83 0.80 0.80İ 0.81 0.81 0.78İ

mon 0.90 0.99Ÿ 0.96Ÿ 1.00Ÿ 0.81İ 0.98Ÿ 0.89 0.89 0.87 1.00Ÿ

pho 0.89 0.89 0.90Ÿ 0.87İ 0.84İ 0.93Ÿ 0.92Ÿ 0.87İ 0.82İ 0.91Ÿ

pim 0.83 0.82 0.81İ 0.81İ 0.84 0.80İ 0.80İ 0.81İ 0.82İ 0.76İ

rin 0.97 0.96İ 0.89İ 0.96İ 0.78İ 0.93İ 0.77İ 0.85İ 0.98Ÿ 0.88İ

son 0.63 0.69 0.70 0.72 0.67 0.65 0.67 0.59 0.56 0.63
spa 0.93 0.95Ÿ 0.86İ 0.95Ÿ 0.94Ÿ 0.95Ÿ 0.92İ 0.81İ 0.83İ 0.91İ

spe 0.87 0.86 0.88 0.87 0.881 0.87 0.83İ 0.86İ 0.74İ 0.85İ

tit 0.86 0.85İ 0.86 0.85İ 0.85İ 0.86 0.83İ 0.87Ÿ 0.84İ 0.86
two 0.98 0.98 0.97İ 0.96İ 0.98 0.94İ 0.97İ 0.94İ 0.98 0.84İ

wdb 0.97 0.98 0.88İ 0.97 0.98 0.97 0.98 0.91İ 0.94İ 0.95İ

wis 0.98 0.97 0.97 0.96İ 0.97 0.97 0.98 0.97 0.971 0.96İ

Avg 0.88 0.88 0.87 0.87 0.85 0.87 0.856 0.84 0.75 0.87
Med 0.88 0.89 0.89 0.88 0.85 0.89 0.89 0.85 0.83 0.86

Table 1: The table reports the experimental F1 measure we obtained on the
analyzed datasets. The best results for each dataset are marked in bold. Results
that are statistically better and worse with respect to our method are marked
with İ and with Ÿ respectively.

From the analysis of Table 1, VSC emerges as the classifier whose perfor-
mance is the best in the highest number of datasets (5 datasets, of which 3 are
ties). For many datasets VSC presents a number of statistically-significant dif-
ferences against the competitors: 73 times VSC is better and 26 times is worse.
46 out of the 73 times where VSC is significantly better occur in the 14 datasets
where VSC is never significantly worse of any competitor. In other 4 datasets
(magic, ring, spambase and titanic) VSC is significantly better more times than
the other way around (4-3, 8-1, 5-4, 4-1 respectively). In just three datasets
(haberman, monk-2 and phoneme) the number of competitors that are signif-
icantly worse is smaller than the number of competitors that are significantly
better of VSC (1-3, 5-1, 3-4, respectively). Finally, in one last dataset (sonar)
VSC is never significantly better or worse of any other competitor.

Considering the competitors, VSC shows good results. In fact, VSC is always
significantly better more times that it is significantly worse, with MLP (3-4) as
the only exception.

4 Conclusion

We have presented VSC, a classifier designed to test the idea that features which
are based on the notion of locality can be effectively incorporated in a multi-
layer perceptron architecture. Max-margin hyperplanes are defined on a subset
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Fig. 1: (a) The datasets in which VSC significantly outperforms the competitor
are marked in blue. The red marks, on the contrary, the datasets for which
the competitor achieves better results. The symbol identifies the competitor.
(b) The datasets in which VSC has F1 higher than the VSC with modified
confidence are marked in blue. The red marks, on the contrary, are the datasets
for which the modified confidence is better. The filled marks represent results
statistically significant.

of the pairs of the samples with different classes and a confidence measure is
defined. The results on 22 benchmark datasets shows that VSC outperforms the
competitors with the exception of MLP, confirming the theoretical assumptions.
The effectiveness of the confidence measure is also empirically verified.

The motivation of the work was to investigate the possibility that locality can
produce features of high quality to be included in more complex architectures.
Further studies will be important to evaluate the scalability in terms of size and
dimensionality of the datasets.
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