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Abstract. Generalised committee machines are here proposed to model
the interaction of the DNA of a simplified artificial organism with its envi-
ronment and shown to induce a unique genotype-phenotype map. An ap-
plication to organisms being subjected to a toxic environment is shown to
allow for a generalised form of antagonistic pleiotropy. The same scenario
is studied in order to show the difference in adaptation in the presence of
a fitness cost given by a lower reproduction rate.

1 Introduction

Natural selection was life’s first strategy on Earth to transmit information about
the environment to following generations, mostly through genes. Learning hap-
pens mainly by random mutations, although it also involves other processes like
sexual reproduction, chromosomal crossover and horizontal gene transfer.

The interaction between genes and the organism’s environment is not direct,
but mediated by cascades of physico-chemical processes. Although mutations
happen on the gene level (genotype), it is the macroscopic characteristics gener-
ated by them (phenotype) that suffer the selection pressure. The map between
these levels is usually not 1-1 and is called a genotype-phenotype map (GPM).

Here, a model is introduced in which the interaction with the environment is
mediated by committee machines whose units are perceptrons. These artificial
organisms live on an idealised lattice representing their habitat. This model,
introduced in section 2, allows for adaptation via natural selection and can be
tuned to account for several biological mechanisms. Section 3 shows that there
is a unique GPM induced by it and provides its main properties. In section 4 we
introduce a simplified scenario of an organism in a toxic environment and show
that it can present a generalised form of antagonistic pleiotropy. In section 5
the influence of the fitness cost of a smaller reproduction rate is analysed.

2 Artificial Organisms

Consider a square N x N lattice with periodic boundary conditions in both
directions in which the artificial organisms live. A random initial configuration
of occupied and empty sites will be evolved in time with the objective of following
the dynamics of a proxy for the quality of the organisms’ adaptation.

The organisms cannot move, but can reproduce. Here, only the case of
asexual reproduction is considered — at each time step ¢, each organism has a
probability r of cloning itself to one of its empty neighbouring sites with equal
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probability. For simplicity, organisms possess a single DNA strand, represented
by a binary chain 7;; € {il}D, where D is an integer, with a probability m per
base of mutating upon reproduction.

The response to the environment is given by a death probability q;;, the
probability that the organism at the i-th row and j-th column dies due to the
local environmental conditions. A minimal requirement for a GMP is that it has
to allow for learning and forgetting, both essential for adaptation. Forgetting is
important in dynamical environments as it allows acquired adaptations to fade
away if they become non-competitive or harmful. One of the most basic models
with these characteristics is the perceptron [1, 2].

The perceptron is the simplest machine learning model. It is characterised by
a function of a multidimensional vector into a number, the activation function,
which is usually a function of the scalar product of its synaptic vector (a vector
encoding learnt information) and the input vector (encoding external stimuli).

The organisms change their output according to external stimuli, encoded
by binary chains A = (a',a?,...,a"), with a* € {j:I}D and p =1,...,n, where
n is the number of perceptrons in the committee representing the organism.

Consider n perceptrons with activation functions ¢, ((a*, 7)), p = 1,...n,
where (x,y) = x - y/D. The response of the organism to the environment is

q= (I)(qﬁl(<a177r>)7 s On((a@”, ),

where lattice indices were dropped for convenience. While no restriction is im-
posed on the range of the activation functions, ® — the integration function of the
committee machine — is required to be real-valued on [0, 1] as it is a probability.
We will often drop the arguments of the activation functions for convenience.

Although simple perceptrons cannot approximate general functions, adding
one extra layer turns them into universal approximators [3]. For this work, one
layer suffices, but the model is flexible and allows for more complex structures.

The form of ® and dimension of A can now be justified. They were cho-
sen to allow mutations in the genotype to simultaneously affect all interactions.
This corresponds roughly to the phenomenon known in genetics as pleiotropy
[4]. In nature, each protein often participates in several metabolic process si-
multaneously and a single gene mutation can affect more than one of them. The
difference here is that we are looking at a kind of pleiotropy at the base level,
which is not the usual meaning in biology. However, if the coordinates of 7 are
considered to represent the genes themselves (for instance, as in [5]), the two
definitions become the same.

The normalisation of the scalar product also requires justification as it leads
to a unique GPM. The choice allows for general activation functions to be O(1)
in D, which is the case in biological realistic scenarios.

3 The Genotype-Phenotype Map

In the simulations, the environment is the same everywhere and generated ran-
domly with the components of a* being i.i.d. variables. Straightforward but
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lengthy calculations show that, for large D, the average values of the corre-
sponding activation functions are approximately (¢,) ~ ¢, (a"7), where a* is
the mean of the components of a* and 7 = D! 223:1 .

Although environments can differ microscopically, the committee can then
only sense them as points in an n-dimensional space. A crucial point in evolution-
ary biology is to find appropriate GPMs [6, 7]. Here, a natural GPM is induced
by the genome interaction with the environment and is given by II(7) = Dm.

This map is an emergent property, a collective effect of a large number of
bases. From the structural properties of GPMs considered in [7], the map II
possesses redundancy, as it is a many-to-one map which maps the set {il}D
with cardinality 2° onto the set {—D,—D +1,....D — 1, D} with cardinality
D + 1 (an exponential reduction in size) and bias, meaning that the number
of genotypes for each phenotype is not the same: given a certain dimension D
and phenotype II, the number of genotypes corresponding to it is simply the

binomial coefficient
( D +11 )
( )/2)°

There are two other properties generally required, robustness and evolvability.
Simulations show that the map allows for adaptation, but it is not robust. The
pre-images in genotype space of the phenotypes are not connected, meaning
that single mutations necessarily change the phenotype. On the other hand,
the network of phenotypes is fully connected by single mutations, allowing any
phenotype or genotype to be reached from any other. Although the map is not
robust in principle, for large D, neighbouring phenotypes result in values of the
activation functions that differ typically by small quantities, which can be seen
as a quasi-robustness. Single mutations then lead to small phenotype variations
and, unless the fitness landscape becomes discontinuous in a significant number
of points, this should not affect evolvability.

4 Antagonistic Pleiotropy

The general model allows for several features from real organisms to be analysed.
The simple case introduced below models the effect of a toxic substance (from
here on, poison) present in the environment. Consider n = 2 and the same
functional form for the death probability of all organisms

q:G)(A)(lfe*‘”A), A=c— ¢,

where ©(A) = 0 if A < 0 and 1 otherwise, i.e., the poison is only harmful if
its concentration c is above a certain threshold dependent on the organism’s
genotype. The function ¢, is a sensibility — how much the death rate increases
with the poison’s concentration.

One possible form for the activation functions is given below

_1+y

o1(y) = ¢2(y) = 1y’
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and a;‘ = a% =—1,i=1,..,D, with ¢1,¢2 € [0,00). One can rewrite it as
¢1 = ¢2 = /(1 — x), with 2 = n/D and n the number of DNA coordinates
equal to -1. When D — oo, x becomes a continuous variable on [0, 1].
Although both activation functions are the same, the two perceptrons play
antagonistic roles. While a higher ¢; improves the organism’s resistance to
the poison, a higher ¢, decreases it by making the organism more sensitive to
it. This phenomenon in which the same genes encode one beneficial and one
detrimental phenotype is known as antagonistic pleiotropy [8], where once again
we are using the broader interpretation of the term discussed previously. It is
important to notice that this is a property induced by the environment and not
a feature of the organism’s genotype only. The same activation functions in a
different environment might not be antagonistic as, for instance, if a7 = 1.

5 Fitness Cost

Beneficial mutations can have fitness costs — disadvantages with respect to the
wild-type (the non-mutated genotype) — which might be a problem if the envi-
ronment changes. There is evidence that this is the case for antibiotic resistance,
where the fitness cost becomes a reduced growth rate [9]. To study this case, let
us define the distance between a genotype 7 and the wild-type by their Ham-
ming distance — the number of mismatching coordinates in the corresponding
vectors. The wild-type generally corresponds to the typical genotype of the most
adapted organisms. Here we arbitrarily use the genotype 1 with all coordinates
equal to 1, which result in H(m,1) = (D —1II).

A precise experimental characterisation of the fitness cost is difficult, but a
reasonable qualitative behaviour can be obtained by an exponential decay with
a Boltzmann factor given by r = rge~“# (™1 where r( is the reproduction rate
of the wild-type and w > 0 is a positive decay constant controlling the decrease
of the reproduction rate with the distance to the wild-type.

The lattice is initialised by putting an organism in each site with probability
1/2. Genotype bases are drawn independently with probability 1/2. The dy-
namics follow two steps at each ¢: (1) Reproduction+Mutation — all organisms
are drawn once in a random order; each has a probability r of spreading a mu-
tated clone to one of its empty neighbours with a probability m of mutation per
base (a flip). (2) Death — all organisms are checked against ¢;; for dying.

Each run of the simulation consists of T" time steps where the double average
of the death probability ¢;; — over all organisms and initial configurations — and
the population are recorded. To avoid stalling due to lack of space, 1/2 of the
organisms are wiped out at random if the network becomes full.

The poison concentration is chosen such that the initial g;; is 0.3 for the
phenotype II = 0. This value, constant during the simulation, allows time for
adaptation before the population is wiped out. The environment is also fixed and
chosen to allow adaptation, which is not always the case. Because D = 100 and
L = 50, one can use the approximation for large D and fix the environment by
the average values a' = 0.4 and a@? = 1. The phenotype of the initial population
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Fig. 1: The plots show the average death probability ¢ for (A) w = 0 and
(C) w = 0.01 together with the size of the populations for the same values of
w, respectively at (B) and (D), at time T = 5001 for different values of the
mutation rate m.

is binomially distributed, broad enough to result in adaptation even if m = 0.
Because ¢;; € [0, 1], instead of using the standard deviation for error bars,
the deviations below and above the mean are separately calculated. Let g be
the average death probability for the k-th run of the simulation and ¢ its average
over all runs. The deviations above and below the mean for ¢ are respectively

o= L3 [P (g

n 2
=%

where Agp = ¢ — G and ny (n_) is the number of cases in which the variation
is non-negative (negative). In practice, the difference to the variance is not
significant except when ¢ is close to the borders of its interval. An analogous
definition is used for the deviations of the population.

Fig. 1 shows the value of the population and the death probability for the
different values of m at T' = 5001 for w = 0 (no fitness cost) and w = 0.01
averaged over 100 runs. Although the fitness cost causes the collapse of the
populations above a certain value of m, which is not unexpected as they grow
slower, this seems to be little effect on ¢ (apart from a higher variability when
the population disappears), which means that the quality of the adaptation does
not change. A more detailed analysis is under way to clarify this behaviour.
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6 Conclusions

The main contribution of this work is a new model for representing the interac-
tion between the genetic code of an organism and its environment. The model
induces a unique GPM in the limit of a large number of genetic bases. A sim-
ple application to an organism in a poisonous environment was shown to allow
for antagonistic pleiotropy and was used to study the effect of a fitness cost to
adaptation.

An interesting possibility is to use this model to find encodings for environ-
mental conditions. Given that several DNA sequences encoding certain pheno-
types are already known, one can use them to learn the environmental vectors.
Once this is done, they can be used to make predictions of the interaction of
different DNAs with an environment without actually introducing the organism.

Another interesting direction of research is the possibility of learning the
integration function of the committee machine. Given it is a general real valued
function, this requires techniques which are still not available and will be the
subject of future research.

I would like to thank Dr J. Neirotti, Dr M.Stich, Dr M.Chli and Dr A. Cheong
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