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Abstract. Reinforcement learning is utilized in contexts where an agent
tries to learn from the environment. Using continuous actions, the perfor-
mance may be improved in comparison to using discrete actions, however,
this leads to excessive time to find a proper policy. In this work, we focus
on including human feedback in reinforcement learning for a continuous
action space. We unify the policy and the feedback to favor actions of
low probability density. Furthermore, we compare the performance of the
feedback for the continuous actor-critic algorithm and test our experiments
in the cart-pole balancing task. The obtained results show that the pro-
posed approach increases the accumulated reward in comparison to the
autonomous learning method.

1 Introduction

Reinforcement learning (RL) is a learning approach inspired by behavioral psy-
chology where an agent, able to interact with its environment, tries to find an
optimal policy to perform a specific task.[1]. In many applications, it is common
to discretize the actions and states space to facilitate the learning, but some
regions of space may be more important than others, and such information may
be lost [2]. Besides, to leave the agent learning a task by itself is impractical and
involves problems to find the proper policy. However, the agent can be guided by
expert or non-expert trainers, external to the environment, where they provide
feedback based on the performance of the agent during the task [3].

This work focuses on including human feedback in RL in continuous ac-
tions and state spaces [4]. The developed strategy based on the policy-shaping
method [5] is used in the continuous actor-critic algorithm [1], where the feed-
back provides information about the policy. To evaluate the performance of
this methodology, we apply it to the task of cart-pole balancing. The results
show that the reward received by the agent is higher in the presence of human
feedback.

Our paper is organized as follows: first, we introduce the theoretical frame-
work of continuous RL and actor-critic algorithm. Next, we define our approach
to include human feedback in RL approach and a description of how the feedback
favors actions. We describe the experimental setup to apply our methodology.
Moreover, we show and compare the performance of human feedback in con-
tinuous actor-critic RL. Finally, we present our conclusions and describe future
works.
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2 Continuous reinforcement learning

Let X C RP and U C R? (p,q € N) be a set of states and a set of actions
respectively. Let x; € X be a state and u; € U an action of the agent at
time ¢, then the states x; transitions to the state x441 through the function
T : X xU — X called transition function. After state z; is reached, the
action receives a scalar reward ry; that is determined by the reward function
p: X xU — R, this function evaluates the immediate performance of the action
selected. The policy is a probability density distribution function 7 : X x U —»
[0, 00), therefore, the action u; is drawn randomly from 7 given the current state
x¢. The goal of the RL agent is to find the policy 7 that maximizes the expected
value of reward it receives in the long run.

Thus, the agent tries to select actions in U such that the discounted sum of
future rewards it receives is maximized. For a given initial state x, the value
of state x, over all the actions, is the expected return of the discounted sum
starting in the state x under the policy 7. Formally we can define this by:

$t:$1,

where 7 is a parameter, 0 < v < 1, called the discount rate. The previous
equation is the state-value function for policy 7. It is clear that the state-value
function and the policy are real valued function, but in tasks with small or finite
state sets, these functions can be approximated using tables with one entry
for each state or state-action pair [1]. The state-value function can be expressed
regarding the value of the next state, this relation is called the Bellman equation
and is defined formally by:

V™ (2) = Ex [res1 + V7 ()],

o0

ZVth+k+1

k=0

VT(x) = Ex

where 2/ € X is the state at time ¢ + 1 based on the current state x.

2.1 Actor-critic algorithm

The actor-critic algorithm [6] is characterized by having a separate memory
structure to represent the policy independent of the value function. The pol-
icy, represented by the actor, is used to select actions and the value function
criticizes the drawing actions. In this work, the actor-critic based on temporal
difference is used as the baseline algorithm to compare our methodology. Let
Vo(x¢) be the approximated value function parametrized by 6 and my(u¢|z:) be
the approximate policy parametrized by . The critic takes the form of the
temporal difference error, defined by:

0 = i1 + YV (xpg1) — Vo(ze)
Using gradient descent methods, the update rule to the critic is:

Or41 =0, + a0, Vo, Vo (xt)
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were a. € (0,1] is the learning rate of the critic and Vy, Vp(x) is the gradient.
At each time step, the actions are selected from a probability density function
o (ut|xt). The update rule to the actor using gradient descent is:

Vg, m9(ut|zt)

Fep1 = U + b
t+1 t t o (i)

where o, € (0,1] is the learning rate of the actor and the vector %W is

denominated compatible features [7].

3 Modified policy with human feedback

Let J; € J be feedback provided by an external trainer at time ¢, and J the set of
all possibles instructions that allow reaching a goal. In some iteration steps, the
trainer may not provide feedback. Thus, the likelihood of receiving feedback [5]
has probability 0 < £ < 1. We suppose that any action wu; is drawn given that
an external trainer provides feedback .J; in the state z;. Let mw(u|z, J¢) be the
probability density function of the actions after taking into account the feedback
Ji and the state z;, at time t. From properties of conditional probability, this
policy can be expressed by:
PJ(‘]|U7 ’JS)P(U, :E)
7T(U|CB, J) - P(I,J)
Py(J|u,2)P(u|x)Py(x)
Py (J|z) P (x)
Py(J|u,x)

= WW(UW ) (1)

where 7(u|z) is the standard policy without the feedback.

The factor % in (1) indicates how much better is the feedback to

complete the task. If Z2UN2) < 9 (r(y|z,J) < m(ulz)) the feedback is ir-

Py(J|x)
relevant or decreases the probability of selecting one action. If % > 1,

(m(u|z, J) > w(u|z)) the feedback improves the policy and increases the proba-
bility of select one action. Like this, the policy gives options to choose actions
in one region around the action with greater probability. However, P;(J|u, z)
grants a privilege to the actions in another region of the space. Thus the actions
with higher probability are placed in another region that favors the actions cho-
sen for the policy as much as actions selected by the feedback. It is clear that
Py(J|u,x) and Py(J|x) are not known, and it is not possible to obtain a large
sample of J; during each step. We can consider any probability density function
7% (ulx) to approximate Py(J|u,z) in (1).

The policies derived from multiple information sources must combine them
because the human feedback is applied in a reinforcement learning algorithm [5],
then the policy based in human feedback my(u|x, J) can be expressed by:

mo(ulz, J) o wy(ulx) x my(ulx). (2)
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The full implementation of the actor-critic with interaction is shown in Algorithm
1.

Algorithm 1: Actor-critic with human feedback

Inputs: v, a., a,.
1. for each episode do
initialize x;
repeat
Choose action u; given by my(u|z, J;) with J; = () (Non feedback)
if rand(0,1) < £ then
Get advice J;
Change actions uy ~ 7y (ulz, J;)
Observe reward r,y; and next state x4
Ot <= Te41 + Vo, (241) — Vo, (1)
Ors1 < 0 + 0. Vo, Vo (24)
Vo, 7o (ue|ze, Jp)
o (we|we, Jp)

SCOXNSUE W

—_ =
—

Vg1 < V¢ + aady

12. until z; is terminal
13. end for

3.1 Gaussian exploration

For discrete actions, the Gibbs distribution and e—greedy are often used for
action selection. In this paper, we define the policy of agent as a Gaussian
distribution to take continuous actions [8]. The probability density function is

defined as 7y (u|z) = \/21#7 exp {—M} where py(z) and o, are respec-

202
tively the mean and the standard deviation of the distribution. The mean is
defined as a linear combination between the parameter vector ¢ and a charac-
teristic vector Xy(x) based in an artificial neural network, whereas the standard
deviation is considered a scalar fixed value in this work. The function 7y, (u|z)
is also considered as a Gaussian distribution with mean and standard deviation
wy(z) and oy respectively. In our implementation py(x) = py(x)+ 3+ J where J
is the feedback with values —1 or 1, and the standard deviation o is considered
a fixed value. The combined policy in (2) is a Gaussian distribution defined by:

2
o (ulz, J) = b exp{_M}
’ - > 2 )
\/27TO'XJ 2UXJ
2 2 2 2
_ ogmw(@)torps (@) 2 959
where puxy = o and 0% ; = vl

4 Experimental setup

To evaluate the performance of our methodology, we apply it to the cart-pole
balancing task. The physical parameters of the cart-pole were fixed as in [6].
The action is a force applied by the cart, set in v € [—10,10], the state is a
4-dimensional vector defined by: the position of car, set in x; € [—2.4,2.4], the
velocity of the car, x5, the pole angle, set in x5 € [—x/15,7/15], and angular
velocity, x4. The episode ends when the pole falls, i.e., |z3] > /15 or the cart
hits the track boundary, i.e., |x1] > 2.4. In each iteration, the agent receives a
reward given by p(x) = cos(42x3), but if the episode ends, an amount of —10 is
added. If the episode has reached the 200th iterations, it ends without negative
reward.
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Fig. 1. Left: Average number of iterations in which the pole remains balanced
per episode. The agent takes advantage of likelihood probabilities by increasing
the number of iterations. Right: Average collected reward over 50 runs for con-
tinuous actor-critic and human feedback actor-critic with different probabilities
of likelihood £ and 95% confidence region of the mean based in the smoothed
value. All curves were smoothed by exponential smoothing.

To imitate a real scenario, the human feedback is considered as the direction
where the cart must move to balance the pole, left or right. We used a simulated
oracle in the place of the human feedback. After selecting an action, the oracle
computes the real necessary force for balancing the pole in the next state. Then,
it returns —1 (left) if the force is less than the action, or 1 (right) if the force is
greater or equal than the action.

The actor-critic is combined with a function approximator to learning the
value function Vjy(z) and the mean j9(x). We used a neural network architecture
that has a 4-dimensional input space and a 1-dimensional output space. For this
setup, we only used a single hidden layer of 100 units with activation relu6. For
the mean, the activation in the output is a hyperbolic tangent, but it scales to
[-10, 10].

5 Experimental results

We studied the performance of including human feedback in the continuous
actor-critic algorithm. We performed simulations for different values of the like-
lihood L, the standard deviation ox, from the policy was set at 1. The discount
rate was set in 0.9 and the learning rates of the actor and the critic were set
at 0.0001 and 0.001 respectively. Figure 1 (left) shows the average number of
iterations from 50 runs in 1000 episodes for different likelihood probability val-
ues L € [0.1,0.7] and oy = 1. Tt is observed that, in the presence of feedback,
the agent can improve its performance, i.e., for even longer the pole is upright
and the car is within the bound, especially in the first episodes. However, the
confidence region shows that feedback increases the error during training. Ad-
ditionally, Figure 1 (right) shows the average collected reward by the agent over
the episodes for different values of £. Better performance is observed in terms
of collected reward, and the maximal amount of reward is reached for all exper-
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iments.

6 Conclusion

In this paper, we focused on including human feedback in reinforcement learn-
ing in continuous action space. We considered an external trainer that provided
a guide to improve the task using an actor-critic algorithm as an approach to
learning. Including feedback, the cumulative reward increases in the continu-
ous actor-critic, nevertheless, the error also increases when the agent receives
guidance during more iterations.

As future work, we consider investigating variations in the parameters of
Gaussian distributions, especially defining the standard deviation dependent on
the current state. Also, we want to vary the probability of likelihood during
the training process to avoid adding error from the external trainer. Finally,
to study the performance of our methodology in more complex scenarios where
actions and feedback are represented in a larger dimension.
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