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Abstract. This work proposes a novel methodology for the recognition
of deforestation areas in tropical forests using weightless neural systems
in UAVs. The weightless neural systems embedded in hardware brings a
considerable improvement in the speed of processing of image-based navi-
gation of UAVs. In our approach the UAV navigates at the frontier of the
deforestation area by means of previously trained descriptors, being able
to monitor the increase of deforestation area. Experiments using images
of the Amazon rainforest have been performed to validate the proposed
approach.

1 Introduction

GPS has become a major aid to aerial navigation and a widely adopted solu-
tion by small and unmanned aerial vehicles (UAVs) localization. Although it
can provide a relatively precise positioning information, signal quality depends
on weather conditions and may fail or become unavailable [1]. Due to recent
advances in pattern recognition systems and lower cost of hardware, visual nav-
igation of UAVs has become a viable alternative to sole GPS navigation [2].
Most UAV aerial surveillance and inspection systems are based on small vehicles,
which have load capacity limitations and require a careful selection of lightweight
sensors and on-board computer. It is, therefore, particularly important to adopt
pattern recognition systems that do not demand a high computational power
and that are feasible to hardware implementation.

Weightless Neural Systems (WNS) are an attractive solution for implement-
ing embedded pattern recognition systems, since they can be directly imple-
mented in hardware as look-up-tables representing Boolean functions. This pa-
per evaluates the use of WNS in visual navigation of UAVs and for deforestation
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surveillance. For visual positioning, the UAV is required to estimate its position
according to its current view of the earth and a georeferenced image (a map)
of the flight area that is provided in advance. By locating itself in the larger
image, geographical coordinates can be estimated. In the approach presented
in this paper, images captured from a real UAV flight are pre-processed with a
WNS edge detection filter prior to recognition with a spatial correlation template
matching approach.

Autonomous visual navigation is also evaluated for detecting deforestation in
large green areas, such as in the Amazon forest. UAV surveillance in the region
is particularly important, since it goes through long cloudy periods over the year,
which restricts the use of satellite images in many applications. Also, ionosphere
phenomena are more common in the southern hemisphere, which degrades GPS
signal reliability and reinforces the need to search for alternative surveillance
systems. Deforestation detection is formulated as a binary image classification
problem with WISARD Discriminators [3]. This module converts a color image
to 1-bit per pixel and this is used as input for the edge detection, which is also
implemented with WISARD discriminators.

2 RAM Discriminator

A RAM discriminator [4] is basically formed by a single layer of p n-inputs
RAMs, which are connected to the N -dimensional input field according to a
pre-established connection criteria. Random connections are usually adopted,
although the connection pattern may change according to the recognition task.
The n-tuples corresponding to each RAM address are read directly from each
input field to which the address lines are connected. Since connections are
usually sparse (n � N) and randomly chosen from the input field, each RAM
learns a (different) randomly selected Boolean function hj(x). Their outputs are
then summed-up in order to produce discriminator’s response, so the output of a
RAM discriminator ri(x) to a given input pattern x can be generally represented
ri(x) =

∑p
j=1 hj(x), where hj(x) is the Boolean function performed by RAM

neuron j.
Training a RAM discriminator is accomplished with a one-against-all strat-

egy, so each RAM is trained only with examples of the class associated to the
discriminator it belongs to. Recognition occurs by presenting the input pattern x
to all discriminators, which respond with the number of matches with previously
trained examples. Final classification is then accomplished with a Winner-Takes-
All (WTA) strategy, that assigns to x the class of the discriminator with the
largest response ri(x).

3 UAV Position Estimation through images

Images captured during a UAV flight over the city of São José dos Campos,
Brazil, are used in the following experiments. The goal is to estimate the UAV
position having as input in-flight captured images and a previously georeferenced
image of the whole navigation area. Position estimation is accomplished by
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locating the current image captured by the UAV, with a Template Matching [2, 5]
approach, in the geo-referenced image. Captured images may present distortions
due to camera resolution, illumination and perspective effects due to UAV axes of
rotation, that may also affect position estimation [6]. So, edge detection is used
prior to Template Matching in order to reduce discrepancies between images,
which were captured at different time slots, under different conditions and with
different image sensors.

Experiments were carried out with the following techniques for image distor-
tion correction: perspective correction, rotation axes adjustment and WNS edge
extraction. Perspective correction considers UAV’s axes angles (Yaw, Pitch and
Roll) and the intrinsic camera parameters in order to obtain the homographic
matrix H, which is applied to the image in order to obtain the projection trans-
formation. For rotation adjustment, only Yaw angle is considered [6]. Edge
detection is accomplished with a 3 × 3 kernel filter implemented with a single
layer WNS, that learns from pre-established edge patterns. Figure 1 presents
a general overview of the methodology adopted for position estimation. Maxi-
mization of the spatial correlation between images, after perspective correction
and edge detection, is used to estimate position. In the experiments that follow,
the Canny operator [7] was also used in order extract edges and compare the
WNS results with another edge detection approach.
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Fig. 1: General overview of UAV position estimation processing flow with edge
detection accomplished by a weightless neural function.

The resolution of the georeferenced embedded image was 0.5 m/pixel and
its size 9872 × 10386 pixels. So the covered flight area had aproximately 5 × 5
kms. The size of the original UAV in-flight captured images was reduced to
approximately 13% of its original resolution resulting in 220 × 220 pixels. As
can be observed in Fig. 2, the planned flight was accomplished in a countryside
region with predominance of green vegetation. The figure also shows the planned
route and position estimation results for the three methods. Table 1 summarizes
the performance of all methods considering distance estimation error, standard
deviation, False Positive (FPimg = 1 if Dist. Errorimg ≥ 100 m) and True
Positive (TPimg = 1 if Dist. Errorimg < 100 m) errors. As can be observed,
the best performance was achieved with perspective correction followed by edge
detection with Canny operator [7]. WNS approach, however, had a competitive

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

321



performance, particularly considering the standard deviation of the errors and
the simplicity of implementation, as will be discussed in the next sections.

Fig. 2: Position estimation for the three methods. The squares in the image
represent the real position, circles represent the estimation with perspective
correction, triangles represent the estimation with rotation correction and the
red stars the WNS approach with perspective adjustment.

Table 1: Performance considering the distance to the real UAV position. (FP
and TP , when the position estimation of the compared algorithms exceeds or
not an error greater than 100 meters)

Case Av. Dist. Error Std Dev. FP(%) TP(%)

Perspective+Canny 36.04 20.27 0 % 100 %
Rotation+Canny 50.01 25.70 2.86 % 97.14 %

Perspective+WNS 44.94 17.50 0 % 100 %

4 Deforestation Surveillance

Google Earth RGB images of the Amazon forest, representing forest green areas
and deforestation, were selected for the experiments. Classification was accom-
plished on pixel level, so each image channel was discretized and represented
with 4 bits, resulting on 12 bits per pixel. Since the two classes are well de-
fined, discretization levels was not too critical, so 4 bits per channel was enough
to properly represent the two classes. Two discriminators were then trained
with randomly sampled examples of pixels extracted from forest and deforested
training images. A total of 169 pixel examples were selected for training, with
56 examples of deforestation and 113 of forest. Each discriminator was con-
structed with 5 12-inputs RAMs, which were randomly connected to the pixel
depth representation.

Although discriminators were built as classifiers on the pixel level, images
were not scanned on a pixel-by-pixel basis. Since the objective was to identify
the presence or not of larger deforested areas, some degree of discretization in
the detected regions is acceptable. So, in order to reduce image scanning costs,
square regions of the input images were classified instead of individual pixels.
For each square region, 50% of the pixels were randomly selected and classified.
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Each square region was classified according to a majority voting amongst all
pixel classifications, resulting on a certain degree of discretization, depending on
the square size, as can be observed in Fig. 3. It is interesting to notice in the
figure that the two regions were correctly identified and that, even some trees
in the deforested area were spot by the classifier. Although the deforestation
region has some green tones, it was correctly classified, which is particularly
interesting in this context, since some of them can be used for cattle farming
and are actually green. This outcome is explained by the fact that training
samples were selected from dense forest areas, which are quite characteristic and
differ from the pale green tones in the deforested area.

(a) Original image. (b) Detected regions.

Fig. 3: Examples of deforestation identification with WISARD discriminator.
Deforestation region is shown in red. In this example, 50 × 50 were classified
according to the majority voting of pixel classification within each region.

5 FPGA Implementation

The edge detector and deforestation discriminators were synthesized consider-
ing the Xilinx Zynq-7000 family, which integrates ARM processor cores with
a FPGA fabric. This architecture is particularly appropriate for this problem,
since the CPU can be dedicated to higher level tasks, while accelerating spe-
cific procedures in the FPGA, such as edge detection and image classification.
The considered model was the xc7z020clg484, which contains a dual-core ARM
CortexTM-A9 CPU and a FPGA Artix-7 with 53200 Look-Up Tables (LUTs).

The synthesis of the edge detection circuit in the FPGA for a single RGB
pixel required the space presented in the first row of Table 2. As can be observed,
very little of the whole FPGA space available was required, which suggests that a
large number of edge detectors could be implemented in the same FPGA in order
to process kernels in parallel. For instance, the parallel processing of three rows
of a 900 × 900 image would require around 3.9% of the LUT space, considering
that each kernel is composed by 9 pixels.

The combinational circuit of the deforestation discriminators was also syn-
thesized for the same IC, which resulted in the LUT space required presented in
the second row of the Table 2. Similarly to the edge detection circuit, the dis-
criminators also required very little space of the FPGA, which suggests also that
several discriminators could be implemented in parallel. For instance, processing
a 50 × 50 region in parallel, considering 50% of the pixels, would require 33%
of the LUTs. In the final application, since the deforestation detection circuit
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output is in fact a binarization of the input image, it could be used as the input
of the edge detection module, simplifying the full implementation.

Table 2: LUTs required for the implementation of the edge and deforestation
detection circuits for a single RGB pixel.

Resource Estimation Available Utilization %

LUT (Edge Detection) 7 53200 0.01
LUT (Deforestation) 14 53200 0.03

6 Conclusions

We proposed a new methodology for the detection of deforestation regions using
UAVs and Weightless neural systems. Experiments with real images of the
Amazon rainforest showed that the WNS were able to identify deforestation
areas accurately, and the extension of the work to other types of surveillance
such as burnt areas and invasion of environmentally protected areas becomes
highly feasible. It can be observed that the WNS in hardware makes UAV
navigation processing time very fast. The complete implementation certainly
would not use IC pins for input and output, but the combinational logic would
be the same. It is very likely that an architecture which pipelines the output of
the deforestation discrimination to the edge detection would require less space
than the conservative evaluation: (14×9)+7 = 133 LUTs, for each kernel. Even
this pessimistic estimation represents only 0.25% of the LUT space available in
the selected component, which is not among the most complex ones from the
same family. From this analysis we conclude that it is possible to implement
combinational blocks to handle several kernels in parallel, while still retaining
enough capacity to implement the high speed bus communication between the
CPU and the FPGA and also add the sequential circuits which will scan the
image rows.
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