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Abstract. The preparation of long-distance runners requires to estimate
their potential race performances beforehand. Athlete performances can
be modeled based on their past records, but the task is made difficult
because of the high variability in runner race performances. This paper
presents a maximum a posteriori (MAP) estimation that addresses the
issues related to this high variability. The inclusion of athlete priors and
a specific residual model are inferred with the help of a large set of race
results.

1 Introduction

Long-distance runs involve aerobic efforts that require endurance as well as men-
tal strength. They range from eight kilometers to hundreds of kilometers. Proper
athlete preparation for a specific race must take into account his expected per-
formance [2]. It is, therefore, useful to predict the latter accurately. This work
aims at predicting the best performance an athlete can expect on any race based
on his previous race results. This work focuses on modeling specifically best per-
formances rather than any past performances because this is what is of primary
interest in the scope of athlete preparation.

One of the most popular models for runner performances describes the rela-
tionship between a runner average speed and the total race distance as a law that
contains two athlete-specific parameters [1]. Using such a model, a set of past
race performances can be used to fit athlete parameters and predict expected
performances on any race of a given length but a couple of issues need to be
addressed.

First, races cannot be strictly summarized by their length: gradient of ascent,
weather conditions, altitude, vegetation, uneven ground and ground firmness
will affect athlete speeds. Nevertheless, fitting athlete parameters is still possible
using the notion of equivalent distances described in [3]. This allows dealing with
races fully characterized by only one parameter: all conditions being summarized
by the equivalent distance.

Secondly, it is common, especially for casual runners, to experience high
variability in performances. For instance, they may attend races in a group,
barely prepared, or get hurt. If the task at hand is to unveil athletes potential,
it is required to model how performances may deviate from it. For this purpose,
this paper introduces an error model that reflects the distribution of athlete
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Fig. 1: Problem illustration with two examples.

performances with respect to the best ones. Fig. 1(a) shows in blue, a standard
regression, and in orange, an example of best performances curve that would be
obtained considering such a specific error model.

Thirdly, the high variability in observed performances can make the solution
to the regression problem physiologically unlikely; for instance, average speeds
that increase with the races total distances (as the orange curve in Fig. 1 (b)).
This third issue is addressed by setting prior assumptions on athlete parameters
that reflect what is more likely to be observed. These assumptions take the form
of probability distributions characterized by parameters that are inferred from
a large set of race results. Athletes curve fitting that considers the error model
and athlete priors is performed using a maximum a posteriori estimation (MAP)
(green curve in Fig. 1 (b)).

The methodology is applied to a set of 736 athletes who all attend to, at
least, ten races in a period of two years. A special procedure is applied for the
method validation because it needs to reflect the ability to predict athletes best
race results and not the ability to predict any of their race results.

2 Data Source

The methodology is applied on official races results sampled on a large variety
of running races organized in Belgium during a period of two years and ranging
from 8 to 159 kilometers. For each of the races in the data set, the equiva-
lent distance must first be computed. This is performed with the methodology
briefly discussed in Section 4 using a set of 106,172 race times (264 races, 29,337
athletes). Subsequently, having a set of athletes and their race results on races
for which equivalent distances are known, a MAP estimation is computed for a
smaller set of athletes to model their performances. It was chosen to keep only
runners with ten or more race results to ensure proper validation; this condition
is met for 736 athletes.
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3 Best Performances Model

According to the model discussed in [1], an athlete a is expected to run race
r with an average speed sa,r that depends on the race distance dr and two
athlete-specific parameters (aa,0, aa,1):

log(sa,r) = aa,1 · log(dr) + aa,0 + ε (1)

where ε refers to an additive error term modeled as a random variable that is
discussed in Section 5.1. The expression can be re-written as sa,r = eaa,0 ·daa,1 ·eε
which shows that the additive error in the log domain becomes a multiplicative
error term with transformed probability distribution in the speed domain.

4 Equivalent Distances

The hypothesis that is made here is that race parameters that affect the running
speed can be summarized with only one parameter per race; namely the equiva-
lent distance. The problem of identifying the equivalent distance for each races
was addressed in [3]. Shortly, under the above hypothesis, equivalent distances
can be assigned to races so that the average squared deviation to Equation (1)
is minimized. It follows that races equivalent distances and athlete parameters
can both be identified by solving the optimization problem

arg min
A,D

∑
(a,r)∈Ω

(aa,1 · log(deqr ) + aa,0 − log(sa,r))
2, (2)

A being the matrix of all athlete parameters (aa,0, aa,1)∀a, D the set of all
races equivalent distances deqr and Ω the set of index pairs (a, r) for which race
performances (sa,r) are observed (athlete a attended race r).

The solution to this equation provides athlete parameters and equivalent dis-
tances but only the equivalent distances are further used. As mentioned in the
introduction, the athlete parameters that are discussed in the next sections have
a different purpose: predict athlete best performances using a MAP estimation.
The athlete parameters discussed in this section are more rough approxima-
tion but are sufficient to compute equivalent distances thanks to the very large
number of athlete that are used (several tens of thousands).

5 MAP Athlete Parameters Estimation

The problem at hand is to find the two parameters aa = (aa,0, aa,1) in Equation
(1) that characterize the potential performances of athlete a, knowing all his
race results. Athlete performances are summarized for each race event r by the
athlete average speed sa,r and the race equivalent distance deqr . In the following,
dataa = {sa,r} denotes the data of athlete a.
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A first approach can assign athlete parameters aa so that they maximize the
likelihood to observe what is actually observed for the set of races Ωa attended
by athlete a. This is known as the maximum likelihood(ML) estimation:

âML
a = arg max

aa

p(dataa|aa) = arg max
aa

∏
r∈Ωa

p(log(sa,r)|aa)

= arg max
aa

∏
r∈Ωa

fε(aa,1 · log(deqr ) + aa,0 − log(sa,r))
(3)

with fε being the error probability density function associated with the random
variable ε in Equation(1). It reflects how athlete performances deviate from
their best performance curve. If normal distribution is assumed, solving (3)
is equivalent to solve a linear regression with the least square error criteria.
The linear regression displayed in blue in Fig. 1 (a) does not reveal athlete best
performances. This motivates the need for a specific probability density function
fε that is presented in Section 5.1.

As mentioned in the introduction, the high variability in observed perfor-
mances can make the regression model nonsensical. This issue is addressed by
including prior assumptions on athlete parameters. The Bayesian theorem can
be used to reformulate our optimization problem to include prior assumptions
fa on athlete parameters. This second approach selects athlete parameters aa
at the maximum of their probability density function (the mode) knowing what
is observed. This is known as the maximum a posteriori (MAP) estimation:

âMAP
a = arg max

aa

p(aa|dataa) = arg max
aa

p(dataa|aa) · fa(aa)

p(dataa)

= arg max
aa

∏
r∈Ωa

fε(aa,1 · log(deq,r) + aa,0 − log(sa,r)) · fa(aa).
(4)

The second probability distribution function fa is discussed in Section 5.2.

5.1 Error Model

The error model is chosen such that the Equation (1) describes the athlete best
performances. The error model must, therefore, follow a probability distribu-
tion that reflects how athlete performances deviate from expected best ones. It
follows that the random variable ε must be allowed to take only negative values
because an athlete can only under-perform his best possible race results. The
gamma distribution (taken with a minus sign) shown in Fig. 2 provides the ex-
pected properties. The multiplicative error term, in the speeds domain, ranges
from 0 to 1 and peaks close to 1 as shown in the same figure. The gamma distri-
bution has two parameters: a shape parameter k and a scale parameter θ. They
will be chosen to maximize the prediction accuracy as discussed in Section 5.4.
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Fig. 2: The error probability distribution function shows how athletes deviate
from their best performance curve.

5.2 Athlete Priors

Athlete parameters have a limited range of allowed values by nature: for instance,
most athletes are not likely to outperform world records and average speeds
should decrease as the total race distance increases (aa,0 must be negative for all
athletes). Setting athlete priors aims at guiding the solution towards the more
likely ones. Gaussian priors are assumed for both athlete parameters (aa,0, aa,1).
The assumption on athlete parameters distribution are, therefore, conditioned
by four parameters (mean and standard deviation for both parameters: (µ0, σ0)
and (µ1, σ1)).

5.3 Athlete Parameters Fitting

Assuming that the priors and the error distributions are known, solving Equation
(4) gives athlete parameters that will allow to predict his best performance for
any given long-distance running race. As the second line of the equation can
be evaluated for any set of athlete parameters, a simplex optimization method
can be used to identify the ones that maximize the probability density. This
optimization problem is solved for each athlete independently with the same
distribution parameters.

5.4 Validation and Distribution Parameters Fitting

The validation of the methodology requires to evaluate the ability to predict
best race performances. For this purpose, best race performances are defined in
terms of the ratio between the race average speed and the world best perfor-
mance expected on the same distance. World best performances are modeled
using a simple linear regression described by Equation (1) with official track
running world records that are ratified by the International Association of Ath-
letics Federations [4]. With the given definition of best performances, for each
athlete, one of his two best performances is randomly selected and kept aside
for validation. The other one stays in the data-set for the MAP regression. The
accuracy of the methodology is computed with the root mean squared error on
the validation races that were not used for athlete parameters fitting.
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Athlete parameters fitting requires that both error distribution and athlete
priors are known: formally it means that 6 distribution parameters have to be
identified (two per athlete parameter and two for the gamma distribution of the
error model). As a large set of athlete race results is at disposal, this operation
is performed by iterating in the distribution parameters space and keeping the
set of distribution parameters that gives the best accuracy on the validation set
(race results that were not used to fit athlete parameters).

6 Results and Conclusion

The methodology allows predicting best performances with an accuracy that is
sufficient to plan casual runners workout sessions.

This paper presents a methodology that aims at predicting best running
performances for an athlete on any given long-distance race. Two issues, both
related to the high variability of the athlete race records are addressed. The
first one is that athlete performances deviate a lot from their potential and
only negatively. This is addressed by the inclusion of a gamma-distributed error
term in the log-speed domain that leads to a multiplicative error term ranging
from 0 to 1 in the speed domain. The second one is that the variability in
the performances can be such that sound regression cannot be inferred from the
athlete data alone. This is addressed by the inclusion of Gaussian prior on athlete
parameters derived from 736 athletes: both distribution parameters (error and
prior) were empirically selected by maximizing the prediction accuracy.

This work is of interest for web companies that provide running guidance
inferred from massive runner data. Such companies own the necessary data to
estimate distribution parameters. Moreover, athlete parameters prior distribu-
tion could be individualized based on athlete data (age, sex, weight, etc.).
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