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Abstract. The increasing occurrence of ordinal data, mainly sociodemo-
graphic, led to a renewed research interest in ordinal regression, i.e. the
prediction of ordered classes. Besides model accuracy, the interpretation of
these models itself is of high relevance, and existing approaches therefore
enforce e.g. model sparsity. For high dimensional or highly correlated data,
however, this might be misleading due to strong variable dependencies. In
this contribution, we aim for an identification of feature relevance bounds
which – besides identifying all relevant features – explicitly differentiates
between strongly and weakly relevant features.1

1 Introduction

Ordinal data often occur in sociodemographic, financial or medical contexts
where it is hard to give absolute qualitative measurements, but it is easily pos-
sible to compare samples. The ordinal regression problem (ORP) is the task
to embed given data in the real numbers such that they are ordered according
to their label i.e. the target variable. Although the problem can be attempted
with a regular regression or classification method, dedicated techniques are to
be preferred, which can account for the fact that the distance between ordinal
classes in the data is unknown and not necessarily evenly distributed. Examples
of ordinal regression include treatments as multiclass classification problem [1],
and extensions of standard models such as the support vector machine (SVM)
or learning vector quantization (LVQ) to ordinal regression tasks [2, 3, 4, 5]

Besides a mere classification prescription, practitioners are often interested in
the relevance of input features i.e. the relevance of ordinal explanatory variables
for the given task. This is particularly relevant when the objective exceeds
mere diagnostics, such as safety-critical decision making, or the design of repair
strategies. There do exist a few approaches which address such feature selection
for ordinal regression: The approach [6] uses a minimal redundancy formulation
based on a feature importance score to find the subset of relevant features. The
work in [7] focuses on multiple filter methods which are adapted to ranking data.
These models deliver sparse ordinal regression models which enable some insight
into the underlying classification prescription. Yet, their result is arbitrary in the
case of correlated and redundant features, where there does not exist a unique
minimum relevant feature set.

1Funding by the DFG in the frame of the graduate school DiDy (1906/3) and by the BMBF
(grant number 01S18041A) is gratefully acknowledged.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

343



The so-called all relevant feature selection problem deals with the challenge to
determine all features, which are potentially relevant for a given task – a problem
which is particularly relevant for diagnostics purposes if it is not priorly clear which
one of a set of relevant, but redundant features to choose. Finding this subset is
generally computationally intractable. For standard classification and regression
schemes, a few efficient heuristics have recently been proposed: A recent approach
focuses on the case of linear mappings and phrases the problem to determine the
interval of possible variable relevances as a linear optimization problem [8].

In this paper we introduce an extension of the feature-relevance-interval-
computation scheme as proposed in [8] to the context of ordinal regression data.
For this purpose, we recapture a large margin ordinal regression formalization
in section 2. This is extended to an optimization scheme to determine feature
relevance bounds in section 3, which can be transferred to a linear programming
problem. In section 4 we compare our method to classical approaches for artificial
data with known ground truth and real life benchmarks.

2 Large Margin Ordinal Regression

Given ordered class labels L = {1, 2, . . . , l}. Given training data X = {xji ∈
Rn | i = 1, . . . ,mi, j ∈ L} where data point xji is assigned the class label j ∈ L.
The full data set has size m := m1 + . . . + ml. Here the index j refers to the
ordinal target variable (represented by bj) the data point xji belongs to. The ORP

can be phrased as the search for a mapping f : Rn → R such that f(xj1i1 ) < f(xj2i2 )
for all i1, i2 and all class labels j1 < j2.

We will restrict to the case of a linear function, i.e. f(x) = wtx with parameter
w ∈ Rn. A popular formulation which is inspired by support vector machines
imposes a margin for the embedding [3]:

min
w,bj ,χ

j
i ,ξ

j
i

0.5 · ‖w‖1 + C ·
∑
i,j

(
χji + ξji

)
(1)

s.t. for all i, j wtxji ≤ bj − 1 + χji (2)

wtxj+1
i ≥ bj + 1− ξj+1

i

bj ≤ bj+1 and χji ≥ 0, ξji ≥ 0

where χji and ξji are slack variables, and the thresholds bj for j = 1, . . . , l − 1
determine the boundaries which separate l classes. The hyper-parameter C > 0
controls the trade off of the margin and number of errors and can be chosen
through cross validation. Unlike [3], which uses L2 regularisation, we will use L1

regularisation in (Eq. 1), aiming for sparse solutions.

3 Feature Relevance Bounds for Ordinal Regression

Assume a training set X. Denote an optimum solution of problem (1) as

(w̃, b̃j , ξ̃
j
i , χ̃

j
i ). This solution induces the value µX := ‖w̃‖1 + C ·

∑
i,j

(
χ̃ji + ξ̃ji

)
,

which is uniquely determined by X. We are interested in the class of equivalent
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good hypotheses, i.e. all weight vectors w which yield (almost) the same quality
as regards the regression error and generalisation ability as the function induced
by w̃. For the sake of feasibility, we use the following proxy induced by µX

Fδ(X) := {w ∈ Rn | ∃ξji , χ
j
i , bj such that constraints (2) hold,

‖w‖1 + C ·
∑
i,j

(
ξji + χji

)
≤ (1 + δ) · µX} (3)

These constraints ensure: 1. The empirical error of equivalent functions in Fδ(X)
is minimum, as measured by the slack variables. 2. The loss of the generalisation
ability is limited, as guaranteed by a small L1-norm of the weight vector and
learning theoretical guarantees as provided e.g. by Theorem 7 in [9] and Corollary
5 in [10]. The parameter δ ≥ 0 quantifies the tolerated deviation to accept a
function as yet good enough, C is chosen according to the solution of Problem
(1).

Solutions w in Fδ(X) are sparse in the sense that irrelevant features are
uniformly weighted as 0 for all solutions in Fδ(X). Relevant but potentially
redundant features can be weighted arbitrarily, disregarding sparsity, similar in
spirit to the elastic net, which weights mutually redundant features equally [11].
In this contribution we are interested in the relevance of features for forming good
hypotheses, where we are interested in the following more specific characteristics:

• Strong relevance of feature I for Fδ(X): Is feature I relevant for all
hypotheses in Fδ(X), i.e. all weight vectors w ∈ Fδ(X) yield wI 6= 0?

• Weak relevance of feature I for Fδ(X): Is feature I relevant for at least
one hypothesis in Fδ(X) in the sense that one weight vector w ∈ Fδ(X)
exists with wI 6= 0, but this does not hold for all weight vectors in Fδ(X)?

• Irrelevance of feature I for Fδ(X): Is feature I irrelevant for every hy-
pothesis in Fδ(X), i.e. all weight vectors w ∈ Fδ(X) yield wI = 0?

A feature is irrelevant for Fδ(X) if it is neither strongly nor weakly relevant.
The questions of strong and weak relevance can be answered via the following
optimisation problems:

Problem minrel(I):

min
w,bj ,χ

j
i ,ξ

j
i

|wI | (4)

s.t. for all i, j conditions (2) hold and

‖w‖1 + C ·
∑
k,l

(
χlk + ξlk

)
≤ (1 + δ) · µX (5)

Feature I is strongly relevant for Fδ(X) iff minrel(I) yields an optimum
larger than 0.

Problem maxrel(I):

max
w,bj ,χ

j
i ,ξ

j
i

|wI | (6)

s.t. for all i, j conditions (2) and (5) hold and
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Feature I is weakly relevant for Fδ(X) iff minrel(I) yields an optimum 0
and maxrel(I) yields an optimum larger than 0

These two optimisation problems span a real-valued interval for every feature
I with the result of minrel(I) as lower and maxrel(I) as upper bound. This
interval characterises the range of weights for I occupied by good solutions in
Fδ(X). Hence, besides information about a features relevance, some indication
about the degree up to which a feature is relevant or can be substituted by
others, is given. Note, however, that the solutions are in general not consistent
estimators of an underlying ‘true’ weight vector as regards its exact value, as has
been discussed e.g. for Lasso [12]. Similar to [8], these optimization problems
can be rephrased as equivalent linear optimization problems which can be solved
efficiently in polynomial time. Here, we omit this formulation and proof due to
page limitations.

Threshold Selection: To estimate a threshold for a feature to be considered
as weakly relevant, we generate features with the same statistical properties
but no relevance by design, sometimes referred to as probe or shadow features
[13]: We permute feature I and compute the relevance interval bounds using
IP instead of I. We repeat this d times. For a cutoff, we accept a certain rate
rFP := 0.01 of false positives. From the descending list of all upper probe interval
bounds we pick the threshold with index brFP × dc. To determine, if a feature
is strongly relevant, it is sufficient to check whether the problem for the lower
bound and feature IP is deemed infeasible by the solver, since the accuracy of
the model without feature I degrades significantly.

4 Experiments

Artificial Data We adapt the generation method presented in [8] for ordinal
regression. By using equal frequency binning we converted the continuous
regression variable into an ordered discrete target variable. Gaussian noise as
well as additional noisy features are added. Several data sets with different
characteristics as regards the amount of strongly, weakly and irrelevant variables
are created this way, see. Table 1.

For evaluation, we consider cross-validated feature elimination. We compare
our model (dubbed feature relevance interval - FRI)2 to ordinal regression with
the Lasso penalty [14] and the ElasticNet [15] penalty with ratio of 0.5L1 + 0.5L2.
Hyperparameters are selected according to 5-fold cross validation. We evaluate
whether the method is able to identify all relevant features, whereby we evaluate
the correspondence of the sets by the true and detected set of relevant features
by the F-measure, see Table 1. In all cases where weakly relevant features are
involved, FRI provides significantly better accuracy than elastic net and Lasso
to detect all relevant features.

Benchmark Data We test the proposed method on benchmark data as described
in [16]. These data sets are imbalanced. The proposed model provides a mapping
x → f(x) = y ∈ {1, . . . , l} where f(x) = argmini{wtx ≤ bi} where bl := ∞. The

2Implementation in Python: https://github.com/lpfann/fri
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Table 1: Artificially created data sets with known ground truth and evaluation
of the identified relevant features by the methods as compared to all relevant
features. The score is averaged over 30 independent runs.

Data Set Characteristics Results (F-measure)
Points Strong Weak Irrelevant ElasticNet FRI Lasso

150 6 0 6 0.91 0.87 0.88
150 0 6 6 0.67 0.93 0.64
256 6 6 6 0.88 0.97 0.87
512 1 2 11 0.81 0.87 0.76
200 1 20 0 0.36 1.00 0.26
200 1 20 20 0.36 0.90 0.41

Table 2: Left: MMAE of FRI, elastic net (EN) and Lasso along with standard
deviations (±) across 30 folds of data sets from [15, 16]. Right: Mean feature set
size of the methods. FRI allows extra discrimination between strong (FRIs)
relevant and weak (FRIw) relevance.

Average Feature Set Size
MMAE FRIs FRIw EN Lasso

Automobile 0.661 ± 0.129 4.5 12.6 4.0 4.8
Bondrate 1.36 ± 0.122 0.0 5.4 2.0 2.0
Contact-lenses 0.914 ± 0.206 0.9 1.1 2.0 2.0
Eucalyptus 0.406 ± 0.027 2.1 33.2 15.6 15.7
Newthyroid 0.667 ± 0.0 0.0 4.7 2.0 2.0
Pasture 0.367 ± 0.121 0.0 15.5 6.0 5.1
Squash-stored 0.39 ± 0.164 2.4 7.9 11.1 6.6
Squash-unstored 0.317 ± 0.168 1.8 3.3 8.0 7.3
TAE 0.621 ± 0.153 1.9 5.4 16.8 13.7
Winequality-red 1.081 ± 0.037 0.0 7.6 5.4 5.3

output is evaluated by the macro-averaged absolute error: MMAE =
∑l

j

∑
i |j−f(x

j
i )|

mj
/l

where mj is the number of examples in class j. We replicated the experiments which have
been presented in [4, 5], whereby results are averaged over 30 folds. Results are reported
in Tab. 2. Since all methods rely on linear models, their MMAE is comparable. For these
data, no ground truth as regards the relevant features is available, so we can only com-
pare the amount of information provided by the methods. We report the average number
of features identified as relevant by the techniques. For three data sets (Squash-stored,
Squash-unstored, TAE), FRI identifies a smaller number of relevant features than the
alternatives, yielding the same accuracy. For three further data sets (Automobile, Euca-
lyptus, Pasture), FRI identifies more (weakly relevant) features. In all cases, FRI offers
more information than direct Lasso or ElasticNet by identifying weakly relevant features.

5 Conclusions

In this paper we presented the adaption of the feature relevance bounds approach
to ordinal regression data. Based on the experiments we showed that the method
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can provide a good all-relevant feature set approximation in this new setting. These
feature sets represent additional information useful in analytic use cases for model and
experiment design, subject for further evaluation.
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