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Abstract. We address the limitations of Deep learning models for 3D
geometry segmentation by using Conditional Random fields (CRF). We
show that CRFs can take advantage of the neighbouring structure of point
clouds to assist the learning of the Deep Learning models (DL). Our hybrid
PN-CRF model is able to learn more optimal weights by taking advantage
of equal-segmentation assignments to neighbouring points. As a result,
it increases the robustness in the model specially for segmentation tasks
where correctly detecting the boundaries between segmentations is very
important.

1 Introduction

The ability to learn directly from unordered data such as 3D geometries remains
a challenge specifically for classification and segmentation. Most techniques
transform 3D geometries into ordered representations so machine learning algo-
rithms such as Deep Learning (DL) can operate on it. This is typically achieved
by summarising the 3D shapes into geometrical features (i.e., characteristics).
However, performing these transformations may induce information loss which
leads to a significant decrease with respect to the learning accuracy. Ideally, we
would like to circumvent these transformations and directly learn on 3D geomet-
rical spaces. In this paper we will describe how to accurately learn to segment
3D geometries without manually transforming the input space.

Our research improves upon three prior studies [1, 2, 3] that introduced
the concept of symmetric function approximation to achieve order equivariance
and invariance to geometrical transformations (i.e., rotation) in 3D point spaces.
They designed a DL architecture that learns to approximate symmetric functions
that allow to find optimal cuts in feature space. In this work, we show that the
architecture of [2] called PointNet dismisses the spatial information that exist
between points, leading it to make wrong predictions between the boundaries
labels or outliers within a segmentation class. Having smooth and accurate
predictions at the boundaries of label segments is very important for different
fields of research. For example, segmentation on point clouds generated by
sensors in self driving cars, requires an accurate boundary between the pavement
and the road. To overcome the PointNet limitations, we introduce a technique
based on Conditional Random Fields (CRF). CRFs have been proven to be
very successful in the field of image segmentation and classification. We found
this technique increases the robustness of the model and reduces noise at the
boundaries between label segments. Furthermore, it speeds up the learning
process on geometries that have complex boundary agreements.
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2 Related Work

The majority of methods that deal with unordered 3D models such a point clouds
accomplish automatic segmentation by transforming the original unordered 3D
format onto an ordered feature space which is then used as input to segmentation
methods or machine learning algorithms. For example, the concept of shape dis-
tributions is introduce in [4], where a shape signature of a geometry is generated
by a probability distribution sampled from a shape function that measures the
geometrical properties of the 3D model [4]. Similarly, local diameter functions
introduced in [5] measures the diameter of a 3D shape in the neighbourhood of
each vertex and then constructs a histogram from this function as a signature
of the 3D shape. A different approach was shown in [6] which rendered a collec-
tion of images taken from different view-angles of the 3D space and used it in
an ensemble of Convolutional Neural Networks (CNN) to extract higher order
features from the 3D geometries. Equivalently, in [7] a voxelised representation
was created from the 3D geometry to extract higher order features using a CNN.
As these techniques transform the data, important information that is useful to
perform high quality segmentation is lost in the process.

3 Methods

3.1 3D point cloud learning

Point clouds are the one of the most basic forms of representing a 3D object.
Formally, a point cloud P is an unordered collection of points {~pi}Ni=1 in Eu-
clidean space R3. This collection of points can be obtained from 3D scanners or
by sampling continuous surfaces. In [2], direct learning from 3d point clouds was
first introduced. They used a Deep learning algorithm called PointNet to first
approximate symmetric functions to achieve order equivariance and to extract
higher order features from the transformed point cloud. This results into a point
cloud which is invariant to geometric transformations such as rotation, transla-
tion and other rigid transformations. The first part of PointNet approximates
the symmetric function and transformation function in R3×3 which is then used
to transform the input space. The second part repeats the same operations as in
the first part of the architecture, however, the transformation matrix R64×64 is
performed on the feature space. The last part of the PointNet consists of extract-
ing the global signature of the input space and aggregating it with local features
to compute the likelihood that a point pi belongs to segmentation label li. As
the second transformations matrix have a higher number of dimensions R64×64

compared to the input transformations R3×3, the feature transformation matrix
is constrained to be close to an orthogonal matrix allowing the preservation of
its symmetric inner product. To achieve this, the cost function is regularised by
the following equation:

Lreg =
∥∥I −AAT

∥∥2
F

(1)
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where A is the approximated feature transformation matrix, I is the identity
matrix, and || · ||F is the Frobenius norm. Adding the Lreg regularisation term
to the cost function renders the optimisation more stable. PointNet accomplishes
on average a accuracy of 86% per segmentation class on the ShapeNet benchmark
dataset [8]. During our visual analysis of the PointNet predictions, we found
that for most well segmented geometries several prediction inconsistencies can
be observed at the edges of segment boundaries and at individual segments (i.e.,
outliers within the segment). We hypothesise that this is due to two reasons
which we will confirm in section 4. Firstly, the architecture in [2] does not
encode the label agreement between boundary segments and the discretisation
density of point clouds may be insufficient to correctly extract the boundaries
between segmentations.

To overcome PointNet limitations highlighted in this section, we propose to
use a technique called Conditional Random Field (CRF) to improve the learning
process by backpropagating the label agreement that exist between neighbouring
points. We will show that introducing information about the inter-features that
exist between points will help the Neural Network to come up with better kernels
that are able to improve feature space partitioning.

3.2 Conditional Random Fields for 3D point learning

A Conditional Random Field (CRF) is a undirected probabilistic graphical
(UGM) model that belongs to the group of generative models. UGMs define
the joint distribution of a set of random variables over the structure of an undi-
rected graph. Besides describing a probability distribution of segmentation labels
for each point, it also models neighbouring information that favours equality of
labels amongst spatial proximal points. Formally, let Z be defined over a set
of random variables {zi}Ni=1 where each variable can take any value from a pre-
defined set of labels L = {li}Ki=1, and a set of observations P = {~pi}Ni=1 which
represent the points coordinates in a point cloud. The CRF is structured as an
undirected graph G = (V, E) where the vertices V index the pair of variables
(zi, ~pi), and the edges E correspond to the dependencies between the neigh-
bouring variables (zi, zj). According to the Hammersley-Clifford’s theorem, [9]
the joint distribution P(z, p) can be directly modelled by its conditional P(z|p)
which can be factorised over a product neighbouring factors. Conditioning on
the neighbours of a variable makes it independent from the rest of the other vari-
ables in the random field. Such a conditional probability distribution is often
referred to as a Gibbs measure.

The simplest model of a CRF is the pairwise-CRF which express the total
energy E(Z,P) as a sum of unary and pairwise factors.

E(Z,P) =
∑
i∈V

ψ(zi, ~pi) +
∑

(i,j)∈E

ψ(zi, zj , ~pi, ~pj), (2)

where the unary factor ψ(zi, ~pi) provides the energy cost of assigning a label
to a point and the pairwise factor ψ(zi, zj , ~pi, ~pj) provides the energy cost of
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assigning a labels to a variable pair. In Neural Networks, we can use the cross-
entropy cost along with a logistic regression (i.e., softmax or sigmoid functions)
to compute the unary term of this equation. However, the pairwise factors
are computed separately over the entrired point cloud and added to the CNN
architecture in order to match the full energy cost of the CRF. The pairwise
factor ψ(zi, zj , ~pi, ~pj) we used in our experiments is as follows:

ψ(zi, zj , ~pi, ~pj) = θ δ(zi, zj) exp(−||~pi − ~pj ||2) (3)

where δ(zi, zj) is a Kronecker delta function that provides the cost of assigning
equal or different labels to a pair of random variables. This means that is
only when zi and zj are different is when the model gets penalised. The second
factor is a similarity cost that modulates the penalty by favouring the equal-label
assignments to spatial proximal points. Incorporating this measure into the loss
function influences the cost such that when the Euclidean distance between two
points is small it becomes likely that their segmentation labels are the same.
Note that the pairwise factor is bounded by θ which restricts it to take control
over the full loss.

More complex global co-occurrence factors δ(zi, zj) can be derived from do-
main knowledge of the family of 3D geometries. For example, in some families
of aircraft, there is a low probability that a point labelled as an engine is next
to a point labelled as a fuselage. In this case, δ(zi, zj) will be close to zero,
rendering the entire equation close to zero even though these two points may be
spatially alongside each other. If such domain knowledge is unavailable, δ can
be approximate by computing the co-occurrence frequencies of the labels found
in the data and by adding a decay during training, such that it will not bias the
learning process in the limit.

To introduce CRF into the Deep learning model, we assume that the distances
between neighbouring points can be pre-computed before the training phase.
However, it is not a requirement during the prediction phase, as this measures
are only used to guide the learning of the network and CRF.

4 Experiments and Results

Our PointNet-CRF (PN-CRF) model was trained on the geometries of the an-
notated version of the ShapeNet dataset [10, 8] which contains 16, 881 shapes
from 16 categories. The ground truth annotations are labelled on the point
sampled from the original shapes. These datasets where partitioned into train-
ing, test and validation sets to evaluate the generalisation accuracy of PN-CRF.
Both PointNet and PN-CRF were setup with the same hyperparameters as in
[2].Furthermore, Table 1 illustrates the IoU (%) accuracy after running the mod-
els on the annotated-ShapeNet dataset. In this table we observe that on average
the both models are very similar in performance. However, when we visually in-
spected the boundaries for most geometries in the ShapeNet, We saw that most
of the boundary segmentation problems in PointNet disappeared. An example,
of these validations are shown in Figure 1. These prediction differences are not
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emphasised in Table 1 as the corrections made by PN-CRF are to small relative
to the overall point cloud.

Table 1: PN-CRF validation results for the ShapeNet dataset . The metric used
is the IoU(%) on the points.
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PointNet-
[2]

72.0 75.5 90.0 75.3 71.8 81.7 91.2 87.5 - 82.8 63.9 88.5 86.9 48.1 90.7 84.7

Ours 72.8 80.4 83.5 77.3 72.0 82.4 91.0 83.5 - 87.7 56.9 90.0 82.3 51.1 89.7 84.9

(a) (c)

PointNet PointNet-CRF PointNet PointNet-CRF PointNet-CRFPointNet

(b)

Fig. 1: Visual Comparison between vanilla PointNet and PN-CRF. These images
shows how the CRF managed to correct the boundary issues between neighbour-
ing surfaces.

4.1 Conclusion

We proposed a 3D Deep learning algorithm that uses Conditional Random Fields
to influence the learning by favouring equal-segmentation assignments to neigh-
bouring points. We show that PN-CRF adjusted the inconsistencies found at
the boundaries and decreased noise on single segmentations. Furthermore, we
analysed the reason of the accuracy loss in the Motor dataset after the CRF.
We found that this was due to wheel fenders. As the CRF enforces equal la-
bel assignments at this location, it makes the points of the wheel to become a
fender label. In contrast, PointNet labels all these points as a wheel which is
also incorrect. The ground truth is a mixture of both where the wheel is more
abundant. We hypothesise that this problem arises because we are computing
the CRF over the whole point cloud and not over a embedding space as done in
[11]. Consequently, this can be potentially corrected by learning the weights of
the DL model and the CRF together. This will be analysed in the near future.
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