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Abstract. In recent years, complex valued artificial neural networks have
gained increasing interest as they allow neural networks to learn richer represen-
tations while potentially incorporating less parameters. Especially in the domain
of computer graphics, many traditional operations rely heavily on computations
in the complex domain, thus complex valued neural networks apply naturally.

In this paper, we perform frame predictions in video sequences using a complex
valued gated auto-encoder. First, our method is motivated showing how the
Fourier transform can be seen as the basis for translational operations. Then,
we present how a complex neural network can learn such transformations and
compare its performance and parameter efficiency to a real-valued gated auto-
encoder. Furthermore, we show how extending both — the real and the complex
valued — neural networks by using convolutional units can significantly improve
prediction performance and parameter efficiency.

The networks are assessed on a moving noise and a bouncing ball dataset.

1 Introduction

Video prediction is the task of predicting future frames by extracting complex
spatio-temporal features from a sequence of seed frames. In recent years Deep
Neural Networks (DNNs) showed promising results in video prediction [1, 2].

Michalski et al. [3] proposed the Predictive Gating Pyramid (PGP) architec-
ture to learn and predict the transformation in a sequence of frames. In PGP
as well as its equivalent fully convolutional architecture [4], a layer of mapping
units encodes transformation using a Gated AutoEncoder (GAE). The GAE is
designed based on the assumption that two temporally consecutive frames can
be interpreted as a linear transformation of one another. GAE was improved by
Alain and Olivier [5] by going into complex domain. Recently the analysis of
DNN architectures in complex domain raised attention as it makes the learning
process faster [6] and the optimization process easier [7].

In this paper, we extend the GAE with tied input weights [5] to perform video
frame prediction and propose a convolutional form which drastically reduces the
number of model parameters while significantly improving the performance on
a Bouncing Balls dataset.

2 Frame Prediction using Deconvolution

A motivating example shows how the transformation between two images that
are translated copies can be calculated by deconvolution.

251

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.



Let Xt−1 be the first image and Xt(x, y) = Xt−1(x− tx, y− ty) be the second
image corresponding to Xt−1 translated by tx, ty. Then, the transformation of
Xt−1 ⇒ Xt can be seen as a convolution ofXt−1 with a δ-function δ(x−tx, y−ty):

Xt(x, y) =

∫
Xt−1(x̂, ŷ)δ(x− tx− x̂, y− ty − ŷ)dx̂dŷ = Xt−1(x− tx, y− ty) (1)

Thus in order to obtain δ(x, y), one can deconvolve Xt with Xt−1:

δ(x− tx, y − ty) =

(
F−1 (FXt)(u, v)

(FXt−1)(u, v)

)
(x, y) (2)

Here, F denotes the two dimensional Fourier transform and F−1 denotes the
two dimensional inverse Fourier transform.

After having obtained the transformation δ, it can be used to extrapolate Xt

and calculate Xt+k:

Xt+k = F−1
(
(Fδ)k · FXt

)
= F−1

((
(FXt)(u, v)

(FXt−1)(u, v)

)k

· FXt

)
(3)

A schematic depiction of these operations can be found in Figure 1 a). While
this works in theory, in practice usually several problems occur: the problem is
ill posed, thus very sensitive to noise and in principle even multiple solutions
could be obtained. |FXt−1| can become arbitrarily small so one usually has
to add a tiny offset ε in the denominator. Furthermore, this method makes the
assumption of a periodic boundary and a uniform translation of the whole image.

Thus we want to train a model which can learn by itself more robust basis
transformations that are not only suited for translations but can also handle
for example rotations. Also, the method should be able to cope with multiple
different local transformations arising from different objects in the scene.

3 Gated Auto-encoders

Fig. 1: a) Frame prediction using deconvolution, b) real valued GAE, c) complex
valued GAE. U,U ′, U ′′, V, V ′,W,W ′ denote, depending on the version of the
architecture, either fully connected or convolutional units. The weights of the
real and complex valued GAE are shared among (U,U ′, U ′′), (V, V ′). Sharing
weights among (W,W ′) strongly decreased performance.
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We refer to Gated Auto-Encoders [8] as ”real valued GAE” and to Gated
Auto-Encoders with tied input weights [5] as ”complex valued GAE”. If the
transformation between images is linear, it can be written as:

Xt = LXt−1 (4)

Here, Xt and Xt−1 denote the vectorized form of the two images and L de-
notes a transformation matrix. If we further assume, that the transformation is
orthogonal, L can be decomposed into:

L = UDU∗ (5)

with U being a unitary matrix (UU∗ = I) and D being a diagonal matrix con-
taining complex numbers of absolute value 1. While the assumption of a linear
orthogonal transformation at first glance seems quite restricting it still comprises
for example all transformations that can be described as pixel permutations (e.g.
translation / rotation / shearing). From 4 and 5, it follows that:

U∗Xt = DU∗Xt−1 ⇒ D = diag

(
U∗Xt

U∗Xt−1

)
(6)

This is remarkable since it shows how orthogonal linear transformations can be
represented in a much more compact way as rotations in the complex plane by
D when the basis is properly changed by U . If we consider, for example, only
translational transformations, U∗ basically becomes a discrete Fourier transform
and D corresponds to phase-differences in frequency domain. This corresponds
exactly to what is described in Section 2 and again, the obtained representation
of the transformation can be used to extrapolate to future frames:

Xt+k = UDkU∗Xt (7)

As for the introductory example, this leads to problems when projections of U
lead to small absolute values, because in this case the computation of D becomes
ill-conditioned resulting in falsely detected transformations.

Thus, the real valued GAE [8] as depicted in Figure 1 b) was developed. In
this architecture, two separate trainable linear modules U and V learn represen-
tations of U∗ and phase-shifted representations of U∗, respectively. Furthermore,
in order to properly normalize the transformation representation, two additional
linear modules (W and W ′T ) and a sigmoid activation function are used. This
representation then is either multiplied (”gated”) by U ′Xt−1 in the case of re-
construction or by U ′Xt in the case of prediction and projected back by V ′T :

Xt = V ′T (U ′Xt−1 ·W ′Tσ(W (UXt−1 · V Xt))) reconstruction (8)

Xt+1 = V ′T (U ′Xt ·W ′Tσ(W (UXt−1 · V Xt))) prediction (9)

This real valued GAE is able to learn robust relational features for a wide range
of linear transformations [8]. However, [5] pointed out that parameter efficiency
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can be drastically increased since U and V learn mostly the same features. A
complex valued GAE was suggested, which directly makes use of Eq. 6. By
treating U∗ in the complex domain, it is not further needed to learn U and V
separately. Instead, by carefully designing the matrices E1, E2, E3, P,R (see [5]
for exact definitions), the network is able to perform all computations directly
in complex domain and neighboring weights in U now correspond to real and
imaginary parts (see Fig. 2). This way, the network is able to spare out V of
the real valued GAE (see also Figure 1 c for a schematic depiction) which not
only results in fewer parameters but also in a strong prior potentially speeding
up convergence. While [5] showed, how complex valued GAE can be used for
reconstruction (see Eq. 10), we were able to evidence that it is as capable for
prediction:

Xt = U ′′RP (E1U
′TXt−1 · E3W

′Tσ(WP (E1U
TXt−1 · E2U

′TXt))) reconstruction
(10)

Xt+1 = U ′′RP (E1U
′TXt · E3W

′Tσ(WP (E1U
TXt−1 · E2U

′TXt))) prediction
(11)

Since GAE scale quadratic in the number of image pixels, we also propose
a convolutional form of the real and complex valued GAE which replaces the
originally fully connected modules U, V,W by convolutional units. The matrices
E1, E2, E3, P,R for the complex valued GAE also stay the same but now are
applied on the corresponding channels.

4 Experiments and Results

We performed several frame prediction experiments on different datasets in order
to investigate the complex valued gated auto-encoder in the fully connected as
well as in the convolutional setting. The network was trained to minimize the
mean square error of the predicted frame with respect to the real follow-up
frame.

number of weights Loss

real GAE, fc 270400 0.63
complex GAE, fc 155976 0.62

Table 1: MSE on the Moving Noise

number of weights Loss

real GAE, fc 1718400 3.3e-3
complex GAE, fc 903496 3.0e-3
real GAE, conv 5640 1.7e-4

complex GAE, conv 3241 2.1e-4
real PGP, 2 layers, conv 103240 3.8e-5

complex PGP, 2 layers, conv 52481 3.1e-5

Table 2: MSE on the Bouncing Ball

4.1 Moving Noise

The moving noise dataset consists of image sequences containing Gaussian noise
which is either uniformly moved in a random direction or uniformly rotated by
a random angle. The resolution is 24 x 24 pixels. Table 1 presents quantitative
results and Figure 2 shows the weights in U learned by the model after conver-
gence. They visually look very similar to the weights obtained by [5], confirming
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that complex GAE can be used for prediction as well. Table 1 shows that the
complex valued GAE performs slightly better than the real valued GAE while
incorporating significantly fewer weights.

Fig. 2: weights of U learned by the complex valued fully connected GAE. The
pairing of neighboring real and imaginary parts is clearly visible.

4.2 Bouncing Balls

This dataset consists of 2 black balls that uniformly move in random directions
of the 2D image plane. If a ball hits a wall or another ball, its movement gets
reflected. The resolution is 64 x 64 pixels. Figure 3 gives an idea about the
qualitative results obtained using the convolutional complex valued GAE.

Fig. 3: top row: ground truth, 2nd row: com-
plex valued GAE, 3rd row: complex valued
PGP. First 3 frames: seed frames, remaining 20
frames: predictions. In this example, the resolu-
tion is only 32 x 32 pixels and the training loss
was averaged over 3 subsequent predicted frames
to train the network on longer time horizons.

Fig. 4: weights of U
learned by the complex
convolutional GAE

Since both balls move in different directions, the space of possible transfor-
mations is huge. This makes the problem especially hard for a fully connected
network. If we however use convolutional units whose kernels only cover a small
part of the image, the transformations again correspond only to translations
and can be more easily learned, while the number of parameters is drastically
reduced. Our experiments (see Table 2) support this claim. Figure 4 clearly
shows, that the convolutional model learns kernels that are able to shift a ball
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in different directions. Interactions between balls however cannot be modelled
by this class of GAE as they violate the linearity assumption we made in the
beginning:

Xball1+ball2
t = L(Xball1

t−1 +Xball2
t−1 ) 6= LXball1

t−1 + LXball2
t−1 = Xball1

t +Xball2
t (12)

To deal with such cases, one has to also include higher order transformations -
for example as shown by Michalski et al. [3] with Predictive Gating Pyramids
(PGP), which we refer to in the following as real valued PGP. A complex valued
PGP can be obtained by replacing all real valued GAE inside the real valued
PGP architecture by complex valued GAE. Experiments with real and complex
valued PGP are also reported in Table 2. Qualitative results (see Figure 3)
indeed show superior performance of the complex valued PGP over the complex
valued GAE when interactions happen.

5 Conclusion

In this work, we first showed, how the notoriously unstable deconvolution op-
eration fits into the framework of gated auto-encoders. We then presented a
way of extending complex valued GAE to perform predictions. Furthermore,
we demonstrated that the complex convolutional form is more efficient than the
complex fully connected form on the bouncing ball dataset. Our work puts some
foundations on complex valued convolutional gated auto-encoders and closes the
loop between real valued GAE [8] and complex valued GAE [5] and PGP.
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