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Abstract.

The minimal learning machine (MLM) training procedure consists in solv-
ing a linear system with multiple measurement vectors (MMV) created
between the geometric configurations of points in the input and output
spaces. Such geometric configurations are built upon two matrices created
using subsets of input and output points, named reference points (RPs).
The present paper considers an extension of the focal underdetermined
system solver (FOCUSS) for MMV linear systems problems with additive
noise, named regularized MMV FOCUSS (regularized M-FOCUSS), and
evaluates it in the task of selecting input reference points for regression
settings. Experiments were carried out using UCI datasets, where the
proposal was able to produce sparser models and achieve competitive per-
formance when compared to the regular strategy of selecting MLM input
RPs.

1 Introduction

In the last years, a new supervised learning algorithm, the minimal learning
machine (MLM, [1, 2]), has gained attention due to its simple and easy imple-
mentation and because its requiriment of only one hyperparameter.

The MLM learning algorithm can be decomposed into two main steps: dis-
tance regression and output prediction. The distance regression consists of solv-
ing a linear inverse problem with multiple measurement vectors (MMV), created
between the geometric configurations of points in the input and output spaces.
Such geometric configurations are built upon through two matrices, created us-
ing subsets of input and output points, called reference points (RPs). Output
prediction for a new incoming input is achieved by estimating distances in out-
put space using the underlying linear model followed by a search/optimization
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procedure in the space of possible outputs. This problem can be understood as
a multilateration problem [3] to estimate the new point location in the output
space using the approximated distances.

Previous works shows that the determination of the RPs, including their
quantity, is fundamental to the generalization of the MLM model for classifica-
tion tasks [4, 5]. In this regard, the training algorithm for the original MLM
establishes that the input and output RPs are associated to the same data sam-
ples and their selection is made randomly, leaving just the number of points as
a user-selected parameter [1]. Although this selection method can reach good
numerical results, the random selection and the use the same pairs of reference
points in the input and the output spaces may be a sub-optimal choice, since
the RPs have different purposes in the out-of-sample prediction. The input RPs
are used in the distance approximation step while the output RPs are used in
the multilateration step. Therefore, the selection of input and output RPs must
be considered as two different tasks.

Theoretically, in multilateration problems, more anchors1 brings higher lo-
cation accuracy [6, 7]. For that reason, in the problem of selecting output RPs,
using all samples is acceptable. On the other hand, the problem of selecting in-
put RPs can be considered as finding a possible good approximation to the true
solution of the MMV linear system between distances computed from the input
and output spaces, subject to sparsity and smoothness constraints. More specif-
ically, selection of the input RPs must minimize the error and the row-diversity
of the MMV linear system. That is, the points that represent non-zero rows of
the coefficients matrix from the generated linear system are searched. Despite
of this problem being generally regarded as NP-hard [8], a number of computa-
tional strategies have been developed to find solutions with low computational
complexity [9, 10, 11].

A popular technique for finding a sparse solution of a MMV linear system
is the extension of the focal underdetermined system solver (FOCUSS, [12])
for MMV linear systems problems with additive noise, called regularized MMV
FOCUSS (regularized M-FOCUSS [9]). This algorithm employs an `p-norm-like
diversity measure, where p is a user-defined parameter.

In order to adopt a sparse profile to the MLM, we propose the use of the regu-
larized M-FOCUSS algorithm to select reference points in the input space. The
proposed method, henceforth called regularized M-FOCUSS minimal learning
machine (RMF-MLM), achieves results equivalent or superior to standard MLM
techniques, besides generating less complex models. The results are confirmed
by experiments with common databases from the literature.

The remainder of the paper is organized as follows: Section 2 briefly describes
the regularized M-FOCUSS MLM. Section 3 reports the empirical assessment of
the proposal and the conclusions are outlined in Section 4.

1In multilateration framework, a anchor (or node) is a sensor with a known position, used
to approximate the position of some other nodes with unknown position.
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2 Regularized M-FOCUSS minimal learning machine

Let {(xn,yn)}Nn=1 be a data set, where X = {xn}Nn=1 and Y = {yn}Nn=1 are
the input and the output data points, respectively, with xn ∈ RD and yn ∈
RS . Furthermore, let R = {rm}Mm=1 ⊆ X be the set of input RPs and T =
{tk}Kk=1 ⊆ Y be the set of output RPs. Moreover, let D ∈ RN×M and ∆ ∈
RN×K be the distance matrices related to input and output, such that the
m-th and k-th columns are respectively [‖x1 − rm‖2 , · · · , ‖xN − rm‖2]

T
and

[‖y1 − tk‖2 , · · · , ‖yN − tk‖2]
T

. The key idea behind MLM is the assumption
of a linear mapping between D and ∆, giving rise to the following regression
model:

∆ = DB + ε, (1)

where B ∈ RM×K is the matrix of regression coefficients and ε ∈ RN×K is a
matrix of residuals. In the original proposal [2], an approximation B̂ of B can
be achieved by the ordinary least squares estimate.

B̂ = (DTD)−1DT∆. (2)

Given a new input point x, the approximation δ̂ = [δ̂1, · · · , δ̂K ] of the dis-
tances between the output y of point x and the K output reference points is
given by

δ̂ = [‖x− r1‖2 , · · · , ‖x− rM‖2] B̂. (3)

Therefore, an estimate ŷ of y can be obtained by the following problem:

ŷ = arg min
y

{
K∑

k=1

(
(y − tk)T (y − tk)− δ̂2k

)2}
, (4)

which can be approached via any gradient-based optimization algorithm.
To select input RPs, we propose a new method called regularized M-FOCUSS

minimal learning machine (RMF-MLM), which relies on a simultaneous sparse
approximation method named regularized M-FOCUSS for the task of identifying
which reference points are not relevant to the MLM’s performance. This method
employs an `p-norm-like diversity measure, where p ∈ [0, 2] is a user-defined
parameter that indicates the degree of sparsity. Initially, the RMF-MLM uses
all the points as RPs (i.e. R = X and T = Y) to compute the distance matrices
D and ∆. After that, the M-FOCUSS is used to achieve an approximation of
B by finding a local minimum of the following optimization problem

B̂ = arg min
B
‖DB−∆‖2F + λ

M∑
m=1

‖bm‖p2 (5)

where λ ≥ 0 is a trade-off parameter balancing estimation quality with diversity
measure minimization, and bm denotes the m-th row of B.
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The regularized M-FOCUSS MLM use the factored-gradient approach of [13,
14] to minimize (5). The algorithm iteractively updates B using the following
steps:

W[t+1] = diag
{

(c[t]m)1−p/2
}
, where c[t]m =

(
K∑

k=1

(
b
[t]
km

)2)1/2

,

Q[t+1] = D[t+1]T
(
D[t+1]D[t+1]T + λI

)−1

∆, where D[t+1] = DW[t+1], (6)

B[t+1] = W[t+1]Q[t+1],

where t is the the current iterative step and I ∈ RN×N is an identity matrix.
The algorithm is terminated once a convergence criterion has been satisfied, e.g.,

‖B[t+1] −B[t]‖F
‖B[t]‖F

< τ, (7)

where τ is a the tolerance parameter. In our experiments, was chosen as 0.01.
In the regularized M-FOCUSS MLM, the choice of p is dictated by the speed

of convergence and the sparsity of B. Values of p ≤ 1 encourages sparsity of
solutions. If p→ 0, the regularized M-FOCUSS approaches a `0-norm-like.

3 Experiments

The performance of RMF-MLM is compared with two variants of the MLM,
regarding the selection of input RPs. The first variant is the full MLM (FL-
MLM), in which the set of input RPs is equal to the training set (i.e., R = X ).
The second variant is the random MLM (RN-MLM), where we randomly select
M input RPs from the training data2.

For a qualitative analysis, we have applied RMF-MLM, RN-MLM and FL-
MLM to solve a toy problem that consists of 200 points in R2 regularly spaced
in x, such that xn ∈ [−3π, 3π], yn = sin xn

xn
+ ε, where ε ∼ N (0, 0.1). In this

experiment, we use for RN-MLM the number of input RPs found by the RMF-
MLM using p = 10−5 and λ = 10−4. Fig. 1 shows the results of this experiment.
Based on the Fig. 1, we can infer that RMF-MLM produced better output when

(a) |R| = 9. (b) |R| = 9. (c) |R| = 200.

Fig. 1: Model outputs and number of input RPs for (b) RMF-MLM, (c) RN-
MLM and (d) FL-MLM when applied to ART dataset.

2In all of this variants, the whole data outputs are used as RPs (i.e. T = Y)
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compared to the other methods. In Fig. 1, one can see that both the FMR-MLM
and RN-MLM use the same number of RPs. Moreover, the curve generated from
the ON-MLM is smoother than the other models.

Tests with real-world benchmarking data sets were also carried out in this
work. We used UCI data sets [15]: Motorcycle (MTR), Servo (SVR), CPU
performance (CPU), Auto MPG (MPG), Boston Housing Data (BHD), Forest
Fires (FFS), Concrete Compressive Strength (CCS), and Abalone (ABA), with
dimensions 167× 5, 209× 7, 392× 8, 506× 14, 517× 13, 1030× 9, and 4177× 9,
respectively. In addition, a well-known artificial data set was also used in our
simulations, the Motorcycle dataset, with dimension 94× 2.

A nested 10-fold cross-validation was used in the experiments. The external
10-fold was used to estimate the performance metrics and the internal to adjust
the user-selected parameters. The adjustment of the parameter M for the RN-
MLM model was performed using the range of 5–95% (with a step size of 5%) of
the available training samples and the distribution used to λ of the RMF-MLM
are {10−5, 10−4, · · · , 10−1}. In Tab. 1, we report performance metrics for the
aforementioned 10-fold cross-validation. We show the root mean squared error
(RMSE) and the average of the number of the input RPs (#IRPs).

Table 1: Performance comparison – average values of root mean squared error
(RMSE) and number of input reference points (#IRPs) for the tenfold cross-
validation – with the RMF-MLM, RN-MLM and FL-MLM.

dataset metric RMF-MLM RN-MLM FL-MLM

p = 0.2 p = 0.4 p = 1

MTR
RMSE 23.35 ± 7.09 23.60 ± 6.67 23.62 ± 6.19 25.12 ± 5.90 30.77 ± 8.01
#IRPs 9.70 ± 0.48 11.70 ± 0.82 26.60 ± 1.35 27.50 ± 8.03 84.60 ± 0.52

SRV
RMSE 0.56 ± 0.18 0.54 ± 0.20 0.54 ± 0.20 0.57 ± 0.25 0.54 ± 0.20
#IRPs 38.00 ± 1.56 63.40 ± 2.22 139.20 ± 1.32 114.80 ± 21.80 150.30 ± 0.48

CPU
RMSE 43.37 ± 22.54 47.17 ± 31.59 45.08 ± 24.92 53.86 ± 39.11 45.18 ± 19.06
#IRPs 12.10 ± 0.88 21.60 ± 6.65 67.30 ± 14.31 137.80 ± 48.30 188.10 ± 0.32

MGP
RMSE 2.59 ± 0.47 2.57 ± 0.46 2.57 ± 0.47 2.69 ± 0.46 2.63 ± 0.49
#IRPs 49.40 ± 2.22 89.00 ± 2.87 238.20 ± 3.26 194.60 ± 70.50 352.80 ± 0.42

HSG
RMSE 2.95 ± 0.78 2.84 ± 0.79 2.80 ± 0.78 2.98 ± 0.82 2.77 ± 0.78
#IRPs 85.00 ± 3.02 160.40 ± 5.50 380.90 ± 2.73 406.00 ± 57.80 455.40 ± 0.52

FFS
RMSE 60.11 ± 44.76 56.36 ± 46.50 57.47 ± 46.08 48.88 ± 47.58 55.72 ± 47.04
#IRPs 35.20 ± 15.77 69.90 ± 29.12 230.70 ± 102.92 247.10 ± 117.67 465.30 ± 0.48

CCT
RMSE 6.06 ± 0.40 5.70 ± 0.47 5.52 ± 0.50 5.64 ± 0.50 5.03 ± 0.54
#IRPs 173.20 ± 4.96 307.50 ± 3.78 722.90 ± 5.97 816.10 ± 76.21 927.00 ± 0.00

ABA
RMSE 2.13 ± 0.09 2.12 ± 0.10 2.12 ± 0.10 2.25 ± 0.35 2.22 ± 0.10
#IRPs 220.20 ± 19.27 334.10 ± 17.90 752.50 ± 28.38 688.00 ± 20.01 3759.30 ± 0.48

As expected, the performance of the RMF-MLM was equivalent to or higher
than the ones achieved by the RN-MLM and the FL-MLM for each evaluated
data set. Particularly, the variants of the RMF-MLM achieved the best results
(in terms of RMSE) in 4 of the data sets. With respect to the number of input
RPs, our proposal achieved best results in all data sets. In other words, our
proposal achieves errors that are comparable to others variants of MLM, but
with a lower number of RPs. It is also important to notice that for most data
sets the RMF-MLM achieved a low standard deviation.
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4 Conclusions

In this paper, we proposed an alternative algorithm to select input reference
points for minimal learning machines for regression tasks based on a method for
diversity measure minimization. The proposed approach was called regularized
M-FOCUSS minimal learning machine (RMF-MLM). Three strategies of MLM
input RPs selection were evaluated. On the basis of our experiments, we can
state that RMF-MLM is a promising alternative to select input RPs, providing
a competitive model while maintaining its simplicity.
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