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Abstract. A combination of Extreme Learning Machine (ELM) and
Minimal Learning Machine (MLM)—to use a distance-based basis from
MLM in the ridge regression like learning framework of ELM—was pro-
posed in [8]. In the further experiments with the technique [9], it was
concluded that in multilabel classification one can obtain a good valida-
tion error level without overlearning simply by using the whole training
data for constructing the basis. Here, we consider possibilities to reduce
the complexity of the resulting machine learning model, referred as the
Extreme Minimal Leaning Machine (EMLM), by using a bidirectional
sampling strategy: To sample both the feature space and the space of
observations in order to identify a simpler EMLM without sacrificing its
generalization performance.

1 Introduction

Sampling is a classical statistical strategy to reduce the number of samples and
the amount of data processing [13]. In supervised learning, sampling can address
either the set of observations or the feature space. Sampling of observations is
usually related to model’s generalization assessment using cross-validation [12, 6],
also in connection to feature selection [7]. Generally forward or backward feature
sampling and selection [14] is based on estimating relevances of the subsets of
features. Random selection of features as a constituent of a machine learning
method with integrated feature importance assessment strategy was popularized
along with the Random Forest technique as proposed by Breiman [1].

Supervised training mechanisms that apply a random selection of constituents
of a model can be traced back to [2]: Radial basis function networks, random
vector functional link networks, Schmidt’s method, and especially to Extreme
Learning Machine [5]. A novel random method based on distances, the Minimal
Learning Machine (MLM), was suggested and described in [3]. In the MLM,
one creates a distance-based regression model between the input and output
sampled distance matrices. After the distance-regression, MLM needs an addi-
tional multilateration step to interpolate a value of an unseen input point in
the distance space. ELM and MLM were integrated in [8, 9] to Extreme Minimal
Learning Machine (EMLM), where the distance matrix from MLM was linked
to the regularized least-squares learning framework characterizing ELM.
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The purpose of this paper is to elaborate on the model complexity of the
novel technique EMLM. The starting point for this are the experimental results
given in [9]: the EMLM does not overlearn so a parameter-free supervised method
is obtained by using the whole training data in learning. We consider, through
a new sampling-based algorithm that bidirectionally samples both input and
feature space, whether we could simplify this full EMLM model withour loosing
the generalization performance.

2 Methods and algorithms

Let a supervised training data with N observations be given: {xi,yi}Ni=1
, where

xi ∈ R
n (input) and yi ∈ R

k (output). In classification problems the given
outputs yi are formed using 1-of-k encoding with the class labels and we let

Y =
[

yi

]N

i=1
∈ R

k×N be the matrix representations of these.
The first step in the MLM [3] contains computation of the following distance

matrix H ∈ R
m×N :

(H)ij = ‖ri − xj‖2, i = 1, . . . ,m; j = 1, . . . , N. (1)

Here the dataset R = {ri}mi=1
is referred as the set of reference points, which

is sampled uniformly from the original set of inputs. In the Extreme Minimal
Learning Machine (EMLM) [8, 9], this distance matrix is used as the feature map
(kernel) in the regularized least-squares optimization problem [10]:

min
V∈Rk×m

J (V), where J (V) =
1

2N

N
∑

i=1

‖Vhi − yi‖22 +
α

2m

k
∑

i=1

m
∑

j=1

|Vij |2. (2)

The coefficients 1

N
and 1

m
in J (V) normalize the two terms and α > 0 is

the Tykhonov regularization/weight decay parameter, which, by enforcing strict
coercivity, guarantees the unique solvability of (2). The solution W ∈ R

k×m of
the least-squares problem satisfies the linear equation

W(HHT +
αN

m
I) = YHT . (3)

Because the purpose of α is not to restrict the model complexity but just to
assure the unique solvability of (3), we fix α =

√
ε, where ε is the machine

epsilon. The EMLM algorithms for training and application with an unseen test
set are formalized in Algorithms 1 and 2. After Algorithm 2, themisclassification-
rate-in-percentages (MCP) error of the EMLM for the test inputs is the relative
amount of false labels in percentages.

As shown in Algorithm 2, complexity of an EMLM model is determined
by the set of reference points in R

m×n and the weight matrix W ∈ R
k×m. A

reduced model is the one which uses either smaller set of reference points m or
less features n. For this purpose, we propose the following sampling-based model
selection procedure for the EMLM:
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Algorithm 1 TrainEMLM - Training phase of the EMLM.

Input: Inputs X = {xi}
N
i=1, outputs Y, and number of reference points m

Output: Set of reference points {ri}
m
i=1 and output weights W ∈ R

k×m

1. Select m reference points {ri}
m
i=1 from X

2. Compute H using formula (1) and solve W from (3)

Algorithm 2 ApplyEMLM - Classification phase of the EMLM.

Input: Ref. points {ri}
m
i=1, weights W ∈ R

k×m, and test inputs X̃ = {x̃i}
M
i=1

Output: Set of labels {li}
M
i=1 for X̃

1. Compute the distance matrix H̃ =
[

h̃i

]

∈ R
m×M as (H̃)ij = ‖ri − x̃j‖2.

2. li = argmax
1≤j≤k (oi)j for oi = Wh̃i

EMLM Sampling Algorithm:

Step 0. Select two integer parameters 1 ≤ Div ≤ n and 1 ≤ Nfld ≤ N .
Set ModSiz = ⌈n/Div⌉ and Nmodels = Nfld · n.

Step 1. Divide the training data into Nfld folds using Dob-SCV algorithm [6].

Step 2. Loop from 1 up to Nmodels by doing

1. Select a fold from Nfld uniformly randomly.

2. Select ModSiz number of features from {1, . . . , n} uniformly randomly.

3. Train EMLM using Algorithm 1 with selected features and the fold as
reference points. Estimate the accuracy of the model using Algorithm 2
in the whole training set with the selected features. Store the MCP error
in two tables: one for the foldwise errors and one for the featurewise
errors (copy of error for all features involved in the model construction).

Step 3. Compute mean foldwise FoldErr and mean featurewise FeatErr errors
over the involved attempts. Sort these vectors in ascending order and divide
both with their maximum values. Select thresholds 0 < FoldThr < 1 and
0 < FeatThr < 1. Remove folds with FoldErr > FoldThr and features with
FeatErr > FeatThr from the final, reduced EMLM model.

Step 4. Train EMLM using Algorithm 1 with the selected folds and features.
Estimate the accuracy of the model using Algorithm 2 with an unseen vali-
dation data.

Concerning the proposed algorithm, by using Dob-SCV we try to assure that
all the folds approximate the data distribution of the input data [6, 7], so that
only one of them can be used for training a reduced model—kind of dual strategy
to cross-validation [6]. After sorting and division by maximum the last values of
FoldErr and FeatErr equal to unity. Hence, with the proposed bounds for the
thresholds we will reduce the EMLM model by omitting at least one fold and
one feature using the sampling algorithm above.
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Dataname N NV n k FM/BM RefCPU

Optdigits 3 823 1 797 61 10 1.2/1.2 3.0e2
Satimage 4 435 2 000 36 6 8.7/8.3 2.8e2
HumActRec 4 252 1 492 561 6 12.5/12.4 3.0e3
USPS 7 291 2 007 256 10 4.4/4.3 4.2e3
Isolet 6 238 1 559 617 26 3.0/3.0 7.1e3
MNIST 60 000 10 000 666 10 1.6/1.5 5.6e5
Gisette1 6 000 1 000 476 2 3.3/3.2 -
Gisette3 6 000 1 000 1 417 2 2.3/2.2 -
Gisette5 6 000 1 000 2 345 2 2.3/2.0 -

Table 1. Description of test datasets.

3 Experiments

Reference versions of the techniques in Section 2 were implemented with Matlab
(R2015b), using the datasets described in Table 1. As preprocessing, we removed
constant variables and min-max scaled all features into [0, 1]. We mostly use the
same datasets as in [9] to enable comparison of the results to two MCP error
base cases in a separate validation set of size NV : the full EMLM model’s result
and the best EMLM model’s result along with the CPU time for searching the
complete model [9] (’FM’, ’BM’, and ’RefCPU’ in Table 1). The new dataset
compared to [8, 9] is ’Gisette’, because it contains half of true features and half
of probe (noise) features by construction [4]. This dataset was sampled to create
three additional test sets: ’Gisette1’ with random selection of 10% of original
features, ’Gisette3’ with 30% and ’Gisette5’ with 50% random sample of features.

Distance is a rigid concept and the euclidean distance underlines the statisti-
cal robustness [11]. Therefore, the original results with the distance-based basis
are readily in a good level for the full EMLM in Table 1. This is especially seen
with Gisette in Table 1, where half of trobe features did not harm EMLM no-
tably when the number of included features was increased. Therefore, we chose
the following thresholds: FoldThr = 0.99 and FeatThr = [0.99 0.98 0.97 0.96],
where after testing the latter sequence the model with the smallest training set
error was selected. Because of the different characteristics of the datasets, Div
and Nfld were fixed individually for each case. We tried to create strictly smaller
models of size ModSiz (’MS’) by selecting a large Div , still ensuring that the
number of inputs for the reduced model was at least equal but typically strictly
larger than the number of classes (see experiments and conclusions in [9]).

The model specifications and the results of the sampling-based model se-
lection are given in Table 2. There, ñ denotes the number of features in the
reduced model and ’ValErr’ the reduced model’s MCP error in the validation
set. ’Nmods’ documents the total number of the reduced models tested during
sampling and ’R%’ gives the reduction rate of the final reduced EMLM model
compared to the full model: 100m(k+ñ)/(N(k+n)). The column ’CPU’ contains
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Data Div MS Nfld Nmods m ñ R% CPU ValErr

Optdigits 5 12 8 488 1 918 49 42 3.0e1 1.3
Satimage 6 6 8 288 3 331 28 61 2.1e1 8.5
HumActRec 8 70 8 4 488 3 723 482 75 9.7e2 11.6
USPS 8 32 8 2 048 5 477 148 45 8.6e2 4.5
Isolet 8 77 8 4 936 4 679 578 71 2.7e3 2.9
MNIST 10 67 10 6 660 54 003 310 43 3.2e4 1.5
MNIST 10 67 20 13 320 51 007 444 57 2.9e4 1.5
Gisette1 8 60 8 3 808 3 750 181 24 1.4e3 2.8
Gisette3 15 94 8 11 336 5 250 543 34 1.2e4 2.1
Gisette5 15 156 8 18 760 3 000 456 10 4.8e4 2.0

Table 2. Experimental results.

the CPU time in seconds taken by the sampling algorithm, when one laptop and
one workstation with 2.6–2.8 GHz processors were used in the experiments.

From Table 2 we conclude that the proposed sampling algorithm was able
to reduce the complexity of the EMLM model while maintaining or slightly
improving its independent validation accuracy. Tests with MNIST and Gisette
show that the more we sample the more we are able to reduce the complexity
of the EMLM. Comparison of ’CPU’ to ’RefCPU’ in Table 1 shows that the
sampling procedure is faster than a full incremental search: the CPU times are
3 up to 18 (MNIST) times faster.

4 Conclusions

The purpose of the work was to study whether a less complex EMLM model
with competitive classification accuracy could be obtained by sampling a batch
of simpler models and selecting the reference points and features for the EMLM
based on error samples. The proposed algorithmic skeleton provided the desired
results: we were, indeed, able to identify a reduced model with similar or slightly
better MCP error in the validation set compared to the full EMLM model or the
best EMLM model from [9].

For some cases (e.g., USPS), the smallest training set error for the compared
reduced models with different values of FeatThr did not give the smallest vali-
dation error. The observations in [6] suggest that one might be able to improve
this by using a more sensitive error measure of the model’s accuracy: The mean-
root-squared-error could give better alignment with the training and validation
set accuracies compared to the discrete MCP error that was applied here.

The results here document an initial assessment of the sampling strategy,
which is easy to parallelize for larger problems. One could and should compare
the selected features to the ones suggested by other techniques, notably Ran-
dom Forest [1]. Perhaps uniform sampling of observations with smaller fold sizes
would allow better separation of important and unnecessary reference points.
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One should also assess the selection of the metaparameters more thoroughly.
This could be based on grid-search and cross-validation (CV) [7], although we
encountered challenges with both LOO-CV and fold-based CV techniques with
the random basis in [8, 9].

An interesting future direction would certainly be to derive a weighted dis-
tance measure based on the sampled accuracy of the features. Furthermore,
sampling could be replaced or directed using analytical methods, because the
simple form of the distance-based basis allows straightforward computation of
the feature saliency similarly to [7].

Acknowledgments The work was supported by the Academy of Finland from
the projects 311877 (Demo) and 315550 (HNP-AI).

References

1. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
2. W. Cao, X. Wang, Z. Ming, and J. Gao. A review on neural networks with random

weights. Neurocomputing, 275:278–287, 2018.
3. A. H. de Souza Junior, F. Corona, G. A. Barreto, Y. Miche, and A. Lendasse. Min-

imal Learning Machine: A novel supervised distance-based approach for regression
and classification. Neurocomputing, 164:34–44, 2015.

4. I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr. Competitive
baseline methods set new standards for the nips 2003 feature selection benchmark.
Pattern Recognition Letters, 28(12):1438–1444, 2007.

5. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: theory and
applications. Neurocomputing, 70(1):489–501, 2006.
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10. T. Kärkkäinen and R. Glowinski. A Douglas-Rachford method for sparse Extreme
Learning Machine. Methods and Applications of Analysis, pages 1–17, 2018. (in
review).
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